
E4S: Extreme-scale Scientific Software Stack
M. A. Heroux, J. Willenbring S. Shende, C. Coti, W. Spear, L. Peyralans, J. Skutnik, E. Keever
Sandia National Laboratories, NM University of Oregon, Eugene, OR
{maheroux, jmwille}@sandia.gov {sameer,coti,wspear,lpeyralans,jskutnik,ekeever1}@uoregon.edu

https://e4s.io
Introduction
Building applications by composing existing libraries and using existing tools can be a
tremendous productivity improvement. If existing software is high quality, accessible and
reusable, one would be much better off using it than writing your own. At the same time, as
HPC and AI/ML software gets more complex, it is getting harder to maintain, install, and
optimize tools and libraries correctly in an integrated and interoperable software stack.

The Extreme-scale Scientific Software Stack (E4S) project [1] aims to tame both the complexity
and portability problems by creating an ecosystem of numerical libraries, runtime systems, and
tools that lowers the barrier for entry for the HPC and AI/ML developer communities. E4S is a
community effort to provide open source software packages for developing, deploying, and
running scientific applications on HPC platforms. It aims to deliver a modular, interoperable, and
deployable software stack based on the Spack [2] package manager. E4S provides both source
builds for native, bare-metal installations, as well as containers of a broad collection of software
packages for secure, reproducible, container-based deployments. E4S exists to accelerate the
development, deployment, and use of HPC software, lowering the barriers for HPC developers
and users.

Motivation
With the growing complexity of hardware and software frameworks, it is getting harder to
maintain and install a software stack to satisfy the growing demands of HPC and AI/ML
application developers. Applications are being distributed in source form and typically need to
be built using a complex set of third-party numerical libraries, runtime systems, and tools. These
applications are typically tied down to a given platform and cannot migrate easily to other sites
that may be running different versions of the underlying operating system, compilers, and
runtime libraries.

A crisis point has been reached where supercomputing centers are employing teams of system
professionals just to maintain and upgrade software packages, largely because the software
dependencies for such applications typically run deep – down to the specific versions of the
Kernel, glibc library and runtime communication library. Significant system resources are now
being spent to maintain the dependency tree associated with each application. ​In many cases,
applications use different versions of or options for certain components within the software
stack, leaving the choice between facilities supporting many versions of some codes, or more
often, computational scientists performing custom installations of some of their required
software dependencies​. ​As APIs evolve, incompatibilities arise, and it is getting increasingly
difficult for computational scientists to build and maintain a consistent software stack. As the

complexity of our software and hardware grows, it becomes difficult to reproduce many
published scientific results, even for the original authors!

Components of E4S
The E4S project, supported by the DOE through the Exascale Computing Project (ECP) [3], is
an effort to build a complete software stack consisting of a broad set of packages that are
commonly used by HPC and AI/ML developers. E4S builds upon Software Development Kits
(SDKs), which are collections of related software products and packages where coordination
across package teams improves usability and practices, and fosters community growth among
teams that develop similar and complementary capabilities.

E4S itself is a curated release of ECP Software Technology (ST) products built using Spack.
Spack is an open-source package manager geared towards simplified, reproducible builds of
the otherwise complicated dependency chains common in HPC software, and provides the
ability to leverage existing compilers and runtime system libraries for native software
installations. E4S currently includes over 50 unique ST products spanning programming models
and run times, math libraries, performance evaluation tools, compilers, data, and visualization
tools. It also provides a validation test suite that helps build, execute, and validate these
products.

The workflow of launching applications using containers is simplified in E4S, and leverages
performant, high-speed, inter-node networking using the system MPI libraries. To simplify
interoperation between containers and host MPI libraries, E4S is developing techniques to
substitute MPI libraries in the containerized applications with compatible MPI libraries at runtime
during the launch of containers (Figure 1). This technique helps reproducibility and makes it
practical to develop applications on a local environment (desktop/laptop) and then transfer the
binary executable to a supercomputer, deploying it using a secure container runtime (such as
Shifter or Singularity) while being able to leverage high speed interconnects.

E4S provides both a VirtualBox image with support for Docker, Singularity, Shifter, and
Charliecloud HPC container runtimes, as well as an AWS image to deploy E4S on EC2
instances. E4S also supports performance portability using a binary build-cache of Spack based
packages to simplify the installation of dependencies for native, bare-metal installation of
software. It supports GPUs from multiple vendors and includes their supporting runtime libraries
such as CUDA and ROCm.

Deploying complex software without testing can lead to reduced confidence in the reliability of
the software. The E4S validation test suite is used in a sophisticated GitLab-based continuous
integration (CI) system, as shown in Figure 2, that builds E4S packages on multiple platforms
using container build pipelines. E4S is the first official “distribution” of Spack in which pull
requests (PR) are automatically tested against how they affect E4S builds. The Spack project
builds on AWS Cloud as part of Spack PR and release testing. A CI dashboard [4] is available

to monitor the progress. Efforts are underway to stand up E4S CI at DOE facilities (such as
ORNL and NERSC) using their preferred compilers and runtime libraries.

Binary caches of E4S software are available to users of Spack and this enables users to quickly
use common variants of E4S packages without having to build them locally from the source
code, as shown in Figure 3. These packages are built as part of the CI process and are stored
in publicly accessible build caches hosted on AWS S3 and the University of Oregon’s S3
servers.

A web portal, modeled after the Homebrew Formulae page, is being developed. This will allow
potential users to discover what variants of E4S software exist in the build cache. An E4S
DocPortal aggregates and summarizes documentation and metadata by raking ST product
repositories. This DocPortal provides a single online location for accurate product descriptions
for ECP ST products.

Summary
E4S is ​not​ a monolithic, take-it-or-leave-it software behemoth or a commercial product, or a
simple packaging of existing DOE software. It is an extensible, open architecture software
ecosystem, accepting contributions from US and international teams and is a framework for
collaborative open-source product integration. It provides a full collection of compatible software
capabilities and a manifest of a-la-carte selectable software capabilities. It acts as a vehicle for
delivering high-quality reusable software products in collaboration with others and acts as a
conduit for future leading-edge HPC software targeting scalable, next-generation computing
systems. E4S is a hierarchical software framework to enhance (via SDKs) software
interoperability and quality expectations.

Figure 1: E4S Container Launcher (e4s-cl) tool for launching MPI applications.

Figure 2. The downstream E4S pipeline triggered by a Spack pull-request.

Figure 3: A searchable web-portal for users to discover pre-built E4S binaries in a Spack build cache.

References
[1] E4S: Extreme-scale Scientific Software Stack, ​https://e4s.io​, 2020.
[2] Spack, ​https://spack.io​, 2020.
[3] ECP: Exascale Computing Project, ​https://www.exascaleproject.org​, 2020.
[4] Spack Dashboard: Latest PR Testing - E4S, ​https://cdash.spack.io​, 2020.

https://e4s.io/
https://spack.io/
https://www.exascaleproject.org/
https://cdash.spack.io/

