INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

Interoperable Tools for Advanced
Petascale Simulations (ITAPS)

TUTORIAL

November 2008

BROOKHRVEN Bl 04K RIDGE NATIONAL LABORATORY g kacificNorthwestNational Laboratory

LLNL-PRES-407129

Tutorial Overview

Morning

Part 1: Introduction

Part 2: Overview of
ITAPS services

Part 3: The ITAPS
Data Model

Part 4a: Basic ITAPS
Interfaces

Hands on exercise:
— Hello iMeshP

©SEDAC

Afternoon

 Part 4b: Advanced
ITAPS Interfaces

 Part 5: ITAPS Software

« Part 6: Experiences
and use in applications

« Part 7: Conclusion

« Hands on exercises:

— Accessing mesh
information

— Partitioning services
through iMeshP

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

PART 1: Introduction

Scientific Discovery through Advanced Computing

THE
UNIVERSITY OF
BRITISH
COLUMBIA

A o NY
B ‘A @E:. & Rensselaer T

STATERMSERSTY OF NEW YOR®

BROOKHRVEN “ OAK RIDGE NATIONAL LABORATORY 7. Pacific Northwest National Laboratory

Unstructured meshes

 An unstructured mesh

— A piece-wise space/time domain
decomposition over which the
simulation is to be run

— General topology-based mesh
representation consists of Geometric domain

* 0-3 D topological entities (vertices,
edges, faces and regions)

« Connectivity between entities called
adjacencies

— Mesh data structure provide services
to create and/or use the mesh data

4

Unstructured mesh methods offer key [TAPS
advantages for numerical simulation

« Some Basic Characteristics
— Meshes of mixed topologies and order easy

— Commonly used spatial decomposition for finite
element discretizations

— Data structures larger and more complex
— Solution algorithms can be more complex

« Some Advantages

— Mesh adaptation can account for curved
domains

— General mesh anisotropy can be obtained

— Easy to create strong mesh gradations without
special numerical techniques

— Alignment with multiple curved geometric
features

Adjacency information is critical in
managing unstructured meshes

— Each particular mesh application has its F
own needs of mesh representation in B
terms of levels of entitesand ||
adjacencies used | Edges |

— Approaches mesh data structure design | ivenices

* Fixed, specific mesh representation
* Fixed, general mesh representation

* Flexible mesh representation *

— Different unstructured mesh databases Faces
will provide different entities and
adjacencies

\ 4
Edges

A\ 4
Vertices

|.,4;’g SciDAC

‘24" Scientific Discovery through Advanced Computing 6

Unstructured Meshes on Parallel
Computers

* Typically the mesh is distributed over independent
memories

* A mesh partition groups mesh entities and places
them into parts

* Applications using a partitioned mesh need

— Communication links for between “shared” partition
mesh entities on neighboring parts b°“’|‘dafy
— Ability to move mesh entities between P, P,

I
|
M’

parts (while maintaining links)

— Algorithms to maintain load balance of
parts which minimizing communications

©SciDAC

¥4 Scientific Discovery through Advanced Computing

Unstructured Meshes on Parallel ITAPS
Computers

 Communication links for distributed meshes need
to provide information associated with mesh
entities and adjacencies

« Extending concepts of mesh entity topology and
entity adjacency to parallel can address these
communication needs

* Will describe the basics through *
the conceptual construct of a Faces
partition mode |

Edges
Ve;tices

Conceptual view of an unstructured ITAPS
mesh partition model

Domain of Mesh distributed Partition model focuses on
Interest over four parts mesh entities between parts

« Mesh adjacency information can provide

— Entities on part boundaries to define inter-part
communications shared entities

— Adjacencies to entities bounded by those entities (for
ghosting, etc.)

Distributed mesh representations ITAPS
have several functional requirements

* Entity ownership

— Each mesh entity is owned by
exactly one part

— Ownership imbues right to modify

— Ownership is not static during the
course of a simulation
* Repartitioning
» Local micro-migration
— Some entities have read-only copies on other parts
(e.g. along part boundaries and ghosts)

e Communication links

— Efficient mechanisms to update mesh partitioning and
keep the links between parts are mandatory

©SciDAC

3% scientific Discovery through Advanced Computing 10

Basic parallel solution on unstructured ITAPS
meshes has several key steps

Construct the initial mesh (serial or parallel)
Improve the mesh using smoothing and swapping
If necessary, (re)partition the mesh across processors
Solve the PDE on mesh and estimate the error
While error > tolerance
Refine, coarsen, improve and repartition the mesh
Solve the PDE on the mesh and estimate the error
End

S

Shape Optimization
h-Refinement

VvV V

S

Omega3P

S3P

T3P

/. Tau3P
CAD Meshing Partitioning Solvers Refinement

Key issues that must be addressed for [TAPS
parallel computation

« Scalability R I -
— Load balance as the mesh changes [
— Low communication overhead costs :ﬂ - ﬁm m ’

2]
(a) teas Procesor (b) Processor

 Function
— Consistent, correct mesh operations

— Management of complex communication
schedules

* Performance
— Near optimal serial efficiency on each processor
— Minimal overhead when using general tools
relative to native implementations

AGYANOEU PRTASOSLE SBULATICNS

Parallel solution is further complicated [Tz
by the needs of advanced simulations

Examples:
| | = — Design optimization requires geometry
o VALl e modification, remeshing, derivative
R e computations
I — Multi-physics applications require
mesh to mesh transfer, interpolation
) methods, sophisticated adaptive
A methods

A

ZCC

©SciDAC

2% scientific Discovery through Advanced Computing 13

The ITAPS team has developed tools [TAPS
to address these needs

« CAD interaction: CGM

 Mesh generation: GRUMMP, NWGrid
* Mesh databases: FMDB, MOAB
 Mesh improvement: Mesquite, swapping tools

« Parallel Adaptive loops: FMDB, NWGrid, MeshAdapt
* Front tracking: Frontier
« Partitioning: Zoltan

Scientific Discovery through Advanced Computing ' 14

While these tools exist, significant
challenges remain

Developing and using these technologies requires
significant software expertise from application
scientists

o Difficult to improve existing codes

e Difficult to design and implement new codes

These tools all meet particular needs, but
» They do not interoperate to form high level services
* They cannot be easily interchanged in an application

The ITAPS center is developing key technologies
to ease the use of advanced meshing tools on
large scale parallel computers

¥ Scientific Discovery through Advanced Computing 15

ITAPS uses a component-based
approach to address these challenges

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

« Develop and deploy key mesh, geometry and field
manipulation component services needed for petascale

computing applications
« Develop advanced functionality integrated services to
support SciDAC application needs
— Combine component services together

— Unify tools with common interfaces and data model to
enable interoperability

— Interfaces are implemented on top of existing mesh
databases
« Work with key application teams to insert ITAPS
technologies into simulations

©SciDAC

5% Scientific Discovery through Advanced Computing

Petascale
Integrated
Tools

Builfl on

Component
Services

Are upified
Ry

16

ITAPS produces mesh services that I[TAPS

meet application needs Sw—

== FUSiON
== Groundwater

Nuclear ener

Solution . Petascale
Petascale AR <hEEs Adaptive \S°'”t'°;/ Mesh
Front tracki timizatio ransf .
Inte g rated Loo C eneration
Tools
| B o o 7/ o
Build on -
Front Mesh Mesh Ny terpolatio Dynamic om/Mesh
Component trackin nprov Adqp_t (N apping Kernels Service ervices
Tools — s . AN A !
Are unified P B 2
by
Common

Interfaces P B
@5ciDAC. .o 17

ITAPS is developing meshing services [TACS
available as stand-alone components

A
Petascale AMR / Shape N Solution Solution Petascale
: >Nape Adaptive Mesh
Integ rated Front tracking Optimization L Transfer G :
Tools 00 eneration
] N,
Build on N~
Component Front Mesh Swabbin nterpolatio Dynamic }/\Geom/Mesh
Tools tracking Improve/ Pping Kernels Services \Services
— | = NN g
*3 —\ =\ SN & ol
Are unified - — X) /‘
by

e You'll hear about
ommon .
Interfaces - many of these technologies

o ose s s today

- 20
BSERAC e

2% scientific Discovery through Advanced Computing

Applications can access ITAPS ITAPS
services in two ways

1. Implement ITAPS interfaces on top of application data

structures | Component

—— Service 3

Application w/ High Level

Own Data Integrated Service Component

Interface > Service 2

————
Component
Service 1

2. Use a reference implementation of the interfaces to provide
access to ITAPS services at the cost of a data copy

Component
, ‘ Service 3
Application using High Level
ITAPS Implementation Integrated Service SeIT e
{ Service 2
Interface <

ITAPS Implementation

Successful development of applications has
ESEtD AC been accelerated by close collaboration.

72 thro
% scientific Discovery through Advanced Computing 19

There are several advantages of the
component-based approach ITAPS uses

* Focus on interfaces not on data structures or
file formats

« Use independent interfaces for distinct data
model abstractions to make adoption easier

* Incremental adoption for applications; only
service dependent interfaces need to
Implemented

* Finer granularity of interoperable functionality
reduces the need to mix huge libraries
together

©SciDAC

¥4 Scientific Discovery through Advanced Computing 20

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

PART 2: An Overview of
ITAPS Services

SEDAC

Scientific Discovery through Advanced Computing

— e
éga‘ t*%% @ ﬁgggi_?al in#é 1 ST@NY ::Irl.'[(-viak SITY OF
H H . s
KA a.‘j Laboratories . I {(:rlsse aer Eﬁg§ ?(R)i IUI ;{T; 1A
™ of
BF“'.”.‘E“.FF'#» “ OAKRIDGE NATIONAL LABORATORY et el N Nz, Laboratory

Interoperable services speed the ITAPS
development of simulation technologies

* |ITAPS provides stand-alone services as libraries

* Improve applications’ ability to leverage advanced
tools

— Mesh quality improvement
— Mesh adaptation loops

— Front tracking

— Mesh partitioning
— Visualization

We’ll provide a brief overview
of each of these tools; more
Information can be found on
www.Itaps-scidac.org

22

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

Mesh Quality Improvement

Lori Diachin (LLNL)
Patrick Knupp (SNL)
Carl Olivier-Gooch (UBC)
©SciDAC

" Scientific Discovery through Advanced Computing

BROOKHRVEN [l Ok RIDGENATIONAL LABORATORY 7. Pacific Northwest National Laboratory

Unstructured mesh quality is a critical 11,

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOSLE SINULATITNG

factor in solution efficiency and accuracy

* In general, mesh size and quality affects

(e.g. Axelsson, 1976; Fried
1972; Axelsson and Barker, 1984)

* lterations grow as a function of N

/ A,

* lterations grow as a function of minimum angle ?
» Solution from iterative solver is less accurate

» For isotropic fields, discretization error
adversely affected by distorted elements (e.g.
Babuska and Aziz, 1976)

» Understanding application solution
characteristics is critical

— stretched elements are more accurate than
¢ ‘equilateral elements for boundary layer flow

% Scientific Discovery through Advanced Computing 24

Mesh quality can be improved using IT.

a variety of methods

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

e -‘ — v
) SCITAL
“**scientific Discovery through Advanced Computing

Edge or Face Flipping

Node Movement
o)
o © y
@) @
O
) o)
p O
O
e @
o
Moving grid points without
changing mesh topology

(@) (@)
(@)
Q@
(@) (@]
e o
(@]
® (@]
@)
(@) .)
o (@}
o (@)

Modify topology without changing
grid point location

25

Mesquite provides advanced mesh ITAPS
smoothing capabilities

 Mesquite is a comprehensive, stand-alone
library for mesh quality improvement with the
following capabilities

— Shape Quality Improvement
— Mesh Untangling
— Alignment with Scalar or Vector Fields

— R-type adaptivity to solution features or
error estimates

« Maintain quality of deforming meshes
 Anisotropic smoothing
« Control skew on mesh boundaries

« Uses node point repositioning schemes

L0 & tific Discovery through Advanced Computing ”

Mesquite is versatile and comprehensive

« 2/3D Structured, Unstructured,
Hybrid Meshes e
« Many different element types

« State-of-the-art algorithms and
metrics

o Efficient to run

 Customizable

— User-defined metrics, objective
functions, and algorithms

27

Parallel smoothing requires special
attention at partition boundaries

Incorrect execution of the smoothing algorithm
can occur unless partition boundaries maintain
consistent updates of vertex locations; requires
synchronization with partition neighbors

O

O
O

O

!
|
P1] e o o i@ | e O\ o P2
free T Sb— iy l@ . ., e
vertices X—s<__/ N\ 74 ® o
Y V. o © i @ a ® \»
~ ® e fixed
b8 \ ° vertices
o -

P
|s‘

{ ,:;f; il AC

% scientific Discovery through Advanced Computing 28

Swapping complements node point
movement in improving mesh quality

« Changing topology can eliminate poorly-
shaped mesh entities directly

« Particularly effective in combination with
node point movement (Freitag and Ollivier-
Gooch, IUNME, 1997)

« Swapping decisions and (especially)
topology change challenging to implement
correctly

« Service using standard interface can handle
all the difficult, error-prone aspects

©SciDAC

¥4 Scientific Discovery through Advanced Computing 29

Mesh swapping capabillities are
available using ITAPS

o Triangular/tetrahedral
swapping with variety of
criteria

« Single edge/face, mesh
subset, or entire mesh

« Boundary modification
optional in 3D

.Built in and user-defined e
swapping criteria provide both
ease of use and flexibility

;m aclentm ¢ Discovery through Advanced Computing 30

Issues with swapping in parallel

* Must migrate data onto single processor to
modify

 Load balance and communication overhead
Issues

r1 mmﬁn ¢ Discovery through Advanced Computing o

Smoothing and swapping improvement I[TAPS
operations work well in concert

Compressible Flow Over a Cylinder Combining
smoothing and swapping improved the
convergence rate by 25% compared to
smoothing alone

Overall mesh improvement cost less than
one multigrid iteration

Original mesh: Min: .56 Max: 178.86
Smoothing only: Min: 12.3 Max 145.6
Both: Min: 23.2 Max: 131.9

Swapping only: Min: .66 Max: 178.9
Both: Min: 4.34 Max: 174.3

Our mesh quality improvement work

has impacted many DOE applications

Application: Plasma implosion using ALE methods
Challenge: Maintain good mesh quality and biasing
during deformation of plasma.

Impact: Prior to use of Mesquite, this calculation
could not be performed by Alegra due to
ineffective mesh rezoning algorithm.

Application: Burn of rocket propellants in a
time-deforming domain

Challenge: Maintain good tetrahedral element
shape quality as domain deforms

Impact: Condition number smoother (through
ShapelmprovementWrapper) enabled

many burn simulations at CSAR/UIUC.

i

—

Application: Shape optimization for
accelerator cavities to minimize losses

Challenge: Rapidly and smoothly update the
mesh to conform to trial geometries

Impact: Used the deforming mesh metric to
prototype geometry & mesh update
model for potential use in SLAC
accelerator design studies.

33

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

ITAPS Adaptive Mesh Service

Mark Shephard (RPI)
Ken Jansen (RPI)
RPI SCOREC Team

BROOKHRVEN [l Ok RIDGENATIONAL LABORATORY 7. Pacific Northwest National Laboratory

Motivation

Complex geometry and/or complex physics
generate solutions with large variation in
length scales

Assigning near optimal mesh sizes for initial
mesh generation in such cases is not
possible

ITAPS Mesh Adapt Service starts with an
arbitrary initial mesh with a solution and
alters the mesh via local mesh modifications
(may be isotropic or anisotropic)

CFD example:

— Isotropic adaptivity yields same accuracy as
uniform with one order of magnitude fewer
elements

— Anisotropic adaptivity yields same accuracy
as uniform with two orders of magnitude less
than uniform

£)SEiDAC

Scientific Discovery through Advanced Computing

35

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

ITAPS Mesh Adapt Service

« Components of an adaptive analysis loop
— PDE solver
— Error estimation procedure

— Mesh adaptation - ITAPS Mesh Adapt
Service

— Field solution transfer - ITAPS Mesh
Adapt Service can support

* ITAPS Mesh Adapt Service
— Input is a mesh and new mesh size field
definition: isotropic or anisotropic
— Mesh adaptation uses local
mesh modification to support:
« Curved Boundaries
* Anisotropy
« Parallel mesh adaptation

©SciDAC

‘S5 scientific Discovery through Advanced Computing 36

Parallel Mesh Adaptation

» Operates with a partitioned mesh

« Control parallel communication and
operations

 Part boundaries do not introduce
artificial constraints on execution of
mesh modification operations

* By including dynamic load balancing
(Zoltan), can be easily integrated with
parallel solvers that also operate with
partitioned meshes

INTRROPERAFLE TCOLS FOR ADVANOED PRTASOALE

T

1oN

Imulat

Inva
10N

Imulat

b

fh«h_g_ﬂ-ﬂ»

M__wwﬁu
v%’ﬁ.

“

R o

e
=

V?

NV

ks i o

£

A
Vavss

38

: o
._utbii.&..."

RN,

il

Y

ication: Forming S

Example Appl

- Meshes become

IoN

Ic deformat
 Components of automated adaptive s

« Large plast

— Model topology update based on contact evolution

— Mesh adapted using automation tools to account for

* Discretization errors

« Geometr

lon

t

ic approxima

N = Ty

fgﬁmﬂ»ﬂ.

B L &%
SR

* Element shape control
bottom die

Parallel Refinement

initial
(265k tets)

]-,

Tests run on IBM Blue Gene/L

At 8 processors
— Initial mesh - 33K/processor
— Final mesh - 226K/processor
At 128 processors
— Initial mesh 2.0K/processor
— Final mesh 16.7K/processor

adapted § 0.96¢
(2,127k te

Scalability for one iteration
of mesh adaptation

8 16 32 64 128
Number of Processors

run-tlr.nebase * N Processors, ...
run-time ¢ n processors 39

Scalability =
1g

Parallel Refinement and Coarsening

initial mesh) Scalability for five iterations
(1,528k tets) At 8 processors

0.9- — Initial mesh - 191K/processor
— Final mesh - 241K/processor

At 128 processors

0.7 — Initial mesh 11.9K/processor

— Final mesh 15.0K/processor

Scalability

0.5-
0.4~
0 8 16 32 64 128
daoted h Number of Processors
adapted mes . .
run-tlmebase n processorsbase

(1,926k tets) Scalability = run-time = N Processors

Mesh Adaptation for 1 Billion ITAPS
Element Mesh

Mesh size field of air bubbles distributing in a tube

9.0E+04
8.0E+04 . .
7 OE+04 BURRRS N

6.0E+04 B R T L AR B o
5.OE+04 | 0 e BT
4.0E+04 '

3.0E+04

2.0E+04

1.0E+04
0.0E+00

before adaptation
after adaptation .

number of regions

0 4000 800 12000 16000
cnu

pro ?nber

Number of regions of adapted mesh among 16k parts

e [nitial mesh: uniform, 17,179,836 mesh regions

e Adapted mesh: 160 air bubbles 1,064,284,042
mesh regions

e Multiple predictive load balance are used to

Initial and adapted mesh at one make the adaptation possible

bubble - colored by magnitude e Larger meshes possible (not out of memory) but

of mesh size field this element count is appropriate for solver

Scientific Discovery through Advanced Computing

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

FronTier Lite

Brian Fix, Ryan Kaufman, Xiaolin Li, and James Glimm
Stony Brook University

Zhiliang Xu and Roman Samulyak
Brookhaven National Laboratory

A t%‘%\ an‘ a e ST@NY .l”T“I‘l[\! RSITY OF
“ {&Aj ()=, @ Rensselaer BRO®K

BRITISH
COLUMBIA

BROOKHRVEN [l Ok RIDGENATIONAL LABORATORY 7. Pacific Northwest National Laboratory

FronTier

Computational domains sharply
different quantitatively or
qualitatively, boundary dynamic

Track the dynamic motion of
distinct bodies, or interfaces
between distinct physical regions

Coupled with hyperbolic,
parabolic, and elliptic PDE
solvers

Suitable for fluid-fluid, fluid-
structure, crystal growth, ph:

Track shock waves, contact
discontinuities, and material
interfaces in computational
continuum mechanics.

FronTier meshed
data structure

EEEEEEEE
NNNNNNNNNN

EEEEEEEE
OOOOOOOOOO

transition, elastic-plastic, ani —_ | *

other moving interfaces

interface

BISERAC Instabilities

Simulation of moving
rigid body

43

FronTier is a library for meshed ITAPS
interfaces

* Preservation of geometry for

rigid body interface 0 % '- 64°
« Accurate interface point

propagation &ﬂ

3
. High resolution at subgrid level € e O 128

« Robust surface topological

change (mesh merge and Accuracy (reversal) tests
bifurcation)

Geometry preservation
Subgrid resolution

SEDAC Robust topological bifurcation

Scientific Discovery through Advanced Computing 44

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

FronTier Service Capabilities

FronTier can be coupled with Riemann solver to give exact
solution of interface propagation in gas dynamics

FronTier can be coupled with projection solver for incompressible
fluid simulation

FronTier can be coupled with elliptic solvers for steady state
problems with unstructured interior boundary

FronTier has been used for MHD simulation in fusion
FronTier has implemented embedded boundary method
FronTier has implemented iMesh interface

FronTier can be inter-operated with PETSc, Hypre, AMR
packages (Overture, Chombo, Samrai), and several graphics and
movie libraries

FronTier is fully parallelized under open-MPI.

©SciDAC

3% scientific Discovery through Advanced Computing 45

Parallel Model

* FronTier parallel model is the geometric
rectangular partitioning domain.

 Entities in some buffer region about the
boundaries are ghosted.

* FronTier's bulk communication method is
designed to operate well when communication

@5ciD Js.a bottl en eck

46

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Parallel issues

* FronTier native parallel model implements a
shared ownership of boundary entities

* Ghost entities are modified locally, and then
compared with parents each time step

* These are things to keep in mind when
working with FronTier in parallel

59" gcientific Discovery through Advanced Computing

47

Application to DOE energy related ITAPS
research

o fy "’a"*{":ﬁgﬁ *
i = 0| 15_‘5;: =
L4 '|E| 5 'J:I_ ' Rppp—
_ _ _ _ Study of subsurface solute precipitation

Simulation of bio-fuel jet for In collaboration with PNNL

efficient and renewable energy

Collaborated with ORNL etc Pelet velosity

Front Tracking simulation of pellet g e P

Ablation, we focus on detailed ablation |
physics, ablation rates etc. By Roman ; Boleribolt
Samulyak et al at BNL in collaboration 5
with General Atomic

o, S c ED AC . "

+ 4+ +
T
| T
+ 4+ +

Other FronTier applications

Acceleration driven fluid interface instabilities
Supernova explosion
Shock-bubble interaction

Simulation of supernova
Explosion By Tulin Kaman

z
ix
¥

Simulation
N By Of Cel I
motion

Rayleigh-Taylor Mixing
/ SLLDAC

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

Dynamic Services (Zoltan)

Vitus Leung and Karen Devine
Sandia National Laboratories

©SciDAC

q

W

%‘iﬂ andia = ST@NY I'Irl;l[{\-'iakﬁlrv oF
“ iAJ; @ b RBI]SSB]&BI“ BROSK) mun,

BROOKHRVEN [l Ok RIDGENATIONAL LABORATORY 7. Pacific Northwest National Laboratory

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Static Partitioning

Initialize Partition Distribute Compute Output
Application Data Data Solutions & End

* Assign mesh entities to processors for parallel

computation.

— Minimize processor idle time.
— Maintain low inter-processor communication costs.

« Static partitioning in an application:
— Data partition is computed.

— Data are distributed according to partition map.
— Application computes.

B4 scientific Discovery through Advanced Computing >1

Dynamic Repartitioning I[TAPS
(a.k.a. Dynamic Load Balancing)

Initialize Partition Redistribute ComPute Output
Y —> » Solutions >
Application T Data Data & Adapt & End

 Redistribute mesh entities among processor to adjust for
changes in the computation.
— Changing workloads in adaptive mesh refinement.
— Changing geometric locality in crash simulations/contact detection.

» Dynamic repartitioning (load balancing) in an application:
— Data partition is computed.
— Data are distributed according to partition map.
— Application computes and, perhaps, adapts.

— Process repeats until the application is done.

S scientific Discovery through Advanced Computing N

o

Zoltan Suite of Parallel Partitioners and |JAE§
Repartitioners

No single method is appropriate for all applications.
Geometric (coordinate-based) methods

Recursive Coordinate Bisection (Berger, Bokhari)
: - Recursive Inertial Bisection (Taylor, Nour-Omid) [~
® ® ® b v
o ® ® r’;ﬂ
L J e [T\
*. . :. ° . Space Filling Curves (Peano, Hilbert
= Refinement-tree Partitioning (Mitchell

Hypergraph and graph (connectivity-based) methods
Hypergraph Partitioning

Hypergraph Repartitioning

PaToH (Catalyurek)

Zoltan Graph Partitioning
ParMETIS (U. Minnesota)
PT-Scotch (U. Bordeaux)

8 | d’

Geometric Partitioning and ITAPS

Repartitioning in Zoltan

+ Partition with respect to entities’ geometric coordinates.
— Assign physically close entities to the same processor.

» Advantages:
— Easy to use; need only coordinate info.
— Fast and inexpensive; suitable for adaptive mesh refinement with
frequent repartitioning.
— Grouping of physically close entities is essential for contact
detection and particle simulations.

— All processors can inexpensively know the entire partition; needed
for global search in contact detection.

* Disadvantages:
— Mediocre partition quality; no explicit control of communication
costs.
— Can generate disconnected subdomains for complex geometries.
©)SciDAC

¥4 Scientific Discovery through Advanced Computing

54

Applications of I[TAPS
Geometric Repartitioners

T

Crash Simulations

Adaptive Mesh Refinement and Contact Detection
(Frequent adaptation (Geometric locality needed
requires fast repartitioning.) for global search.)

Particle Simulations ~ .0
oo Geometric locality needed = ...
Seientific Discovery through Advanced Computing. (O particle interactions.). = - | 55

Connectivity-based Partitioning
and Repartitioning in Zoltan

« Partition with respect to entities’ data dependencies.
— Assign entities that depend on each other to the same processor.
— Graph/Hypergraph representation:
» Entities are graph/hypergraph vertices.
» Dependencies are edges/hyperedges.
* Advantages:
— Proven highly successful for mesh-based PDE problems.

— Explicit control of communication volume gives higher partition
quality than geometric methods.

* Disadvantages:
— More expensive than geometric methods.

— More difficult to use than geometric methods.

©SciDAC
Y

3% scientific Discovery through Advanced Computing 56

Applications of ITAPS
Connectivity-based Partitioners

Finite Element Simulations
(Explicit control of communication costs enables efficient computation.)

ES
l 5902+c02 ¢F Re2
o R2 ¢

L2

s INDUCTOR R
tE7VOLTAGE | -

*LLTTTTT]

NS Cm' Lt _RL T Icm .
+COl ||||||||) CEE sgl
(o} Do) A b
Electronic Circuit Simulations Linear Solvers & Preconditioners
éNg work-based data does not (Partitioners’ communication metrics

coordlnate |nfo) are designed for matrix operationssy

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

Visualization using Vislt

Mark Miller

Lawrence Livermore National
Laboratories

W

%‘iﬂ andia = ST@NY I'Irl;l[{\-'iakﬁlrv oF
“ iAJ; @ b RBI]SSB]&BI“ BROSK) mun,

BROOKHRVEN [l Ok RIDGENATIONAL LABORATORY 7. Pacific Northwest National Laboratory

Vislt provides many advanced ITAPS
capabillities

* Free interactive parallel visualization
and graphical analysis tool for
scientific visualization

o Useful for scalar, vector, and tensor
fields in multiple dimensions

« Can visualize data on point, rectilinear,
curvilinear and unstructured grids

« Powerful, full featured graphical
user interface

« Parallel architecture for visualizing %“’
terascale data sets Yol

« Extensible with dynamically
loadable plug-ins

https://wci.lInl.gov/codes/visihome.html

ITAPS has been integrated with
Vislt as a database plug-in

* A single plug-in supports multiple ITAPS
Implementations

« Supports all entity types

« Supports subset and and tag data
visualization

« Future integration will use Vislt's in-situ
‘'simulation’ interface

— Will enable any ITAPS-compliant software to
integrate with Vislt at run-time

©SciDAC

Vislt can be used to display test data ITAPS
from multiple implementations

Example of Vislt displaying test data from
multiple ITAPS implementations simultaneously

mmmmmmmm

iz T)
Plots Operators PlotAms OpAtis =0 G A= B S 2] 2
wall J&h% H Y ‘\m

61

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

PART 3: ITAPS Data Model

Scientific Discovery through Advanced Computing

- STONY
@ Rensselaer BRO®K

“ OAK RIDGE NATIONAL LABORATORY

7N
B A

NATIONAL LABORATORY

THE
UNIVERSITY OF
BRITISH
COLUMBIA

2 Pacific Northwest National Laboratoty

The ITAPS interoperability goal requires!l~w

abstracting the data model

 The data model must encompass a

: _ broad spectrum of mesh types and
» Information flows from geometrical usage scenarios

representation of the domain to the
mesh to the solvers and post-
processing tools

« Adaptive loops and design
optimization requires a loop

A set of common interfaces

— Implementation and data
structure neutral

— Small enough to encourage
adoption

— Flexible enough to support a
broad range of functionality

< Shape Optimization
h-Refinement

Omega3P

S3P

i

| b

{] i

fa / i

e o
§
e i - -

T

i

T3P

Tau3P
CAD Meshing Partitioning Solvers Refinement 63

The ITAPS data model abstracts ITAPS
PDE-simulation data hierarchy

« Core Data Types

— Geometric Data: provides a high level description of the
E boundaries of the computational domain; e.g., CAD, image, or
mesh data (iGeom)

— Mesh Data: provides the geometric and topological information
associated with the discrete representation of the domain (iMesh)

'J — Field Data: provides access to time dependent physics variables

associated with application solution. These can be scalars,
vectors, tensors, and associated with any mesh entity. (iField)
« Data Relation Managers (iRel)
— Provides control of the relationships among the core data types
— Resolves cross references between entities in different groups
— Provides functionality that depends on multiple core data types
) SciDAC

?""‘“"'fg Discovery through Advanced Computing 64

P

The ITAPS data model has four
fundamental “types”

 Entity: fine-grained entities in interface (e.g.,
vertex, face, region)

* Entity Set: arbitrary collection of entities &
other sets
— Parent/child relations, for embedded graphs

between sets

* Interface Instance: object on which interface
functions are called and through which other
data are obtained

» Tag: named datum annotated to Entities and
Entity Sets

AP :_T
g Bclentiﬂ Disco verythrough Advanced Computing 65

These core data types blend abstract
and specific concepts

» Entity Definition /
— Unique type and topology A.i

— Canonical ordering defines adjacency
relationships

« Entity Set Definition

— Arbitrary grouping of ITAPS entities &
other sets --

— There is a single “Root Set”

— Relationships among entity sets
« Contained-in
 Hierarchical

 These objects are accessed using
opaque (type-less) “handles”

©SciDAC

IMesh(P) provides access to the
discrete representation of the domain

* iMesh supports local access to the mesh

* IMeshP complements iMesh with parallel
support

* Must support
— Access to mesh geometry and topology
— User-defined mesh manipulation and adaptivity
— Grouping of related mesh entities together (e.g.
for boundary conditions)
* Builds on a general data model that is
largely suited for unstructured grids

* Implemented using a variety of mesh types,
software, and for a number of different
usage scenarios

‘--:.u-r_-a Bclentin ¢ Discovery through Advanced Computing of

T

The iMesh interface supports basic IACD
and advanced local operations

 Provides basic access to vertex coordinates and
adjacency information
— Mesh loading and saving

— Global information such as the root set, geometric
dimension, number of entities of a given type or topology

— Access to all entities in a set as single entities, arrays of
entities, or entire set

— Set/remove/access tag data

» Set functionality
— Boolean operations (union, subtract, intersect)
— Hierarchical relationships

« Mesh modification
— Adding / Deleting entities
— Vertex relocation
— No validity checks

) ScilDAC

?""‘“"'fg Discovery through Advanced Computing

P

68

IMeshP extends iMesh to support
parallel computations

* Focus on distributed memory

— For example: use application's
MPI communicators

— But allow use of global address
space and shared memory
paradigms

* Leverage serial iMesh

— Works as expected within a
process

— Works as expected for global
address space and shared

memory programs
©SciDAC

3% scientific Discovery through Advanced Computing 69

A ACYANOED PRTASOALE SIMULATITNG

The iMeshP parallel interface defines 114
a partition model

 Process:. a program executing;
MPI process
— # of processes == MPI_Comm_size
— Process number == MPI_Comm_rank

* |IMesh instance: mesh
database provided by an
Implementation
— One or more instances per process

« Partition: describes a parallel
mesh
— Maps entities to subsets called parts
— Maps parts to processes
— Has a communicator associated with it
©SciDAC

L @

““% Scientific Discovery through Advanced Computing 70

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

The Partition Model

» Ownership: right to modify an entity /A~

 Internal entity: Owned entity not on ‘ / \
an interpart boundary. s
— E.g., all triangles w/ same color as
iMesh label for part
« Part-Boundary entity: Entity on an
interpart boundary
— E.g., bold edges
— Shared between parts (owner indicated
by color; other parts have copies). ;
« Ghost entity: Non-owned, non-part-
boundary entity in a part
— E.g., triangles whose color is different from iMesh label
— Needed for adjacency and/or solution data

« Copies: ghost entities + non-owned part-boundary entities.

©SciDAC
‘B4 scientific Discovery through Advanced Computing 71

Partition Characteristics

* Maps entities to parts

— Part assignments computed with respect to a set
of entities

— Computed assignments induce part assignments
for adjacent entities

 Maps parts to processes
— Each process may have one or more parts
— Each part is wholly contained within a process

« Has a communicator associated with it

— “Global” operations performed with respect to data
In all parts in a partition’s communicator

— “Local” operations performed with respect to either
a part’s or process’ data

©SciDAC

¥4 Scientific Discovery through Advanced Computing 72

The geometry interface provides I[TAPS
access to the computational domain

e Must support
— automatic mesh generation
— mesh adaptation
— tracking domain changes
— relating information between
alternative discretizations
« Builds on boundary
representations of geometry

« Used to support various underlying representations

— Commercial modelers (e.g., Parasolid, ACIS)
— Modelers that operate from standard files (e.g. IGES, STEP)
— Models constructed from an input mesh

: mmnmmmmmcomwm 73

Basic and advanced functionalities ITAPS
are supported in the geometry interface

* Model loading and initiation

« Topological queries of entities and
adjacencies

* Pointwise geometric shape
Interrogation

« Parametric coordinate systems
« Model topology modification

©SEDAC

Scientific Discovery through Advanced Computing h

Relating mesh and geometry data is [TAPS
critical for advanced ITAPS services

* Required for e.g., adaptive loops, mesh
quality improvement

* Mesh/Geometry Classification Interface

— Manages the relationship between the high
level geometric description and the mesh

— Called by an application that knows about
both

« Capabilities
— For a given mesh entity, get the geometric
entity against which it is classified

— Establish a classification relationship between
a mesh entity and a geometric entity

Geometric Model

Initial Mesh

Multiple approaches can be used to 1TAPD
embed application specific data

 Boundary conditions
— Approach 1:

* Boundary conditions associated with geometric model

« Mesh classified on geometric model connects boundary
conditions to mesh entities

— Approach 2:

* Mesh entities grouped together into an entity set that is
tagged to represent boundary conditions

e Solution data

— Tags associated with the appropriate mesh
entities

“®%”Scientific Discovery through Advanced Computing 76

Summary of the ITAPS data model

 The data model abstracts the information flow
in PDE simulations: Geometry, Mesh, Fields
and their Relations

« Each core abstraction has a separate
interface definition: iMesh, iGeom, iField, iRel

« The core building blocks of the data models
are entities, entity sets, interfaces and tags

* The parallel data model defines partitions,
parts, and entity ownership concepts

©)SciDAC

2% scientific Discovery through Advanced Computing 77

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

PART 4a: Basic ITAPS Interfaces

‘Scientific Discovery through Advanced Computing

;&: @ ﬁg{:g:’?ﬂ ST@NY ;I;‘IT“I.'[[:\" ERSITY OF

&) 5. @ Rensselaer Breok 5 i

Kr, of ::Fj STATEUMMERSTY OF NEW YORY : !
BROOKHEVEN H OAKRIDGE NATIONAL LABORATORY) Pacific Notthwest National Laboratory

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Outline

* iIMeshP ITAPS Interface (w/ examples)
» Best Practices (for Performance)

« Language Interoperability
— C-binding interface
— SIDL/Babel

i g e
By ugh Advanced Computing 79

An overarching philosophy guides our 1TAPD
interface definition efforts

Lowers the burden

« Create a small set of interfaces that existing for adoption of the
packages can support interface

— Should be able to implement the interfaces based on
your representation of data structures

Performance is
critical for kernel

— Allows incremental adoption computations

. . involving mesh
+ Keep interfaces for the different core data access; flexibility
model abstractions separate foggt;;g' o

usage spectrum

« Balance performance and flexibility
« Work with a large tool provider and application

CCA provides

community to ensure applicability infrastructure and
. idance f
- Language Interoperability domain-specic
— C interface callable from C, C++ and Fortran riertace definition
— Use SIDL/Babel for Java and python support
©SciDAC

S scientific Discovery through Advanced Computing 80

ITAPS Interfaces Designed for ITAPS
Interoperability

appl.f77 app2.f90 app3.CC app4.c

S

app2.py Babel _
\ £77 client iMesh
Python client | Server (C)

app3.java ——— Java client

* Interoperability across language,
application, implementation

x Y 4

» Multiple call paths to the same _ : _
implementation implA.CC implB.c impIC.f77

« Efficiency preserved using
direct, C-based interface

© SCIHRAC

% scientific Discovery through Advanced Computing 81

Enumerated types used in the
ITAPS interface

* Important enumerated types:
— EntityType (iBase VERTEX, EDGE, FACE, REGION)
— EntityTopology (iIMesh_POINT, LINE, TRI, QUAD, ...}
— StorageOrder (iBase BLOCKED, INTERLEAVED)

— TagDataType (iBase INTEGER, DOUBLE,
ENTITY_HANDLE)

— ErrorType (iBase_ SUCCESS, FAILURE, ...J

 Enumerated type & function names both have
IBase, iMesh, iGeom, other names prepended

©SciDAC

2% scientific Discovery through Advanced Computing

82

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Simple Example: HELLO iMesh

#include "iMesh.h® Simple application that
int main(int arge, char *argv[]){)) i
char *options = NULL; 1) Instantiates iMesh interface
iﬁzsie’;st:;‘;‘e ;‘1‘:;‘1'1.°Pti°ns—1en = 0 2) Reads mesh from disk
iBase EntitySetHandle root; 3) Reports # entities of each
dimension
/* create the Mesh instance */

‘ iMesh newMesh (options, &mesh, &ierr, options len);
iMesh getRootSet (mesh, &root, &ierr);

/* load the mesh */
‘ iMesh load(mesh, root, argv[l], options, &ierr,
strlen(argv([l]), options len);

/* report the number of elements of each dimension */
for (dim = iBase VERTEX; dim <= iBase REGION; dim++)
‘ iMesh getNumOfType (mesh, root, dim, &num, &ierr);
printf ("Number of %d-D elements = %d\n", dim, num);
}
iMesh dtor (mesh, &ierr);
return 1;
} Note: for brevity, there’s no error checking here,
o but there should be in your code!!!
T Mind Ya -
;Scnllfkig

?Scientific Discovery through Advanced Computing 83

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

HELLO iMesh Makefile

CC = cc -g
CXX = c++ -g

FMDB TOP = /usr/local/itaps/visit/fmdb
LIBDIR += -L$(FMDB_TOP)/lib

LIBS += -1FMDB -1SCORECModel -1SCORECUtil
INCPATH += —I$(FMDB_TOP)/include

hello: hello.c
S (CC) S (INCPATH) -c hello.c
$ (CXX) $(LD FLAGS) -o $@ hello.o $(LIBDIR) $(LIBS)

(2SciDAC

=4 scientific Discovery through Advanced Computing 84

Simple Example: HELLO iMeshP

#include "iMesh.h"
#include "iMeshP.h"
#include <mpi.h>
int main(int arge, char *argv([]) {
char *options = NULL;
iMesh Instance mesh;
iMeshP PartitionHandle partition;
int me, dim, num, ierr, options len=0;
iBase EntitySetHandle root;
/* create the Mesh instance */

Parallel Version: HELLO iMeshP
1) Instantiates Partition

2) Reads mesh into mesh
instance and Partition

3) Reports # parts in Partition

iMesh newMesh(options, &mesh, &ierr, options len);

iMesh getRootSet (mesh, &root, &ierr);
MPI Init (&argc, &argv);

MPI Comm rank (MPI COMM WORLD, &me) ;
/* Create the partition. */

/* load the mesh */

iMeshP createPartitionAll (mesh, MPI COMM WORLD,

&partition, &ierr);

iMeshP load(mesh, partition, root, argv[l], options, &ierr,

strlen(argv([l]), options len);

/* Report number of Parts in Partition */

iMeshP getNumParts (mesh, partition, &num, &ierr);
printf ("%d Number of Parts = %d\n", me, num);

85

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

HELLO iMeshP Makefile

CC = mpicc -g
CXX = mpicxx -g

FMDB TOP = /mnt/disk2a/txie/tmp
LIBDIR += -L$(FMDB_TOP)/1ib \

-L../Zoltan/Obj linux64 \

—L../ParMETISB_l —L../FMDB_iMeshP/lib/linux64
LIBS += -1FMDB -1SCORECModel -1SCORECUtil \

-lzoltan -lparmetis -lmetis -lautopack

INCPATH += -I$(FMDB_TOP)/include/FMDB
CC += -DIMESHP -DPARALLEL

helloP: helloP.c
S(CC) S (INCPATH) -c helloP.c
S (CXX) $(LD_FLAGS) -0 $@ helloP.o $(LIBDIR) $(LIBS)

SSERAC

Scientific Discovery through Advanced Computing 86

it

ITAPS API's: Argument Handling ITAPS
Conventions

 |ITAPS API's are C-like and can be called directly from C, Fortran, C++

« Arguments pass by value (in) or reference (inout, out)
— Fortran: use %VAL extension
« Memory allocation for lists done in application or implementation

— If inout list comes in allocated, length must be long enough to store results of
call

— By definition, allocation/deallocation done using C malloc/free; application
required to free memory returned by implementation

— Fortran: Use “cray pointer” extension (equivalences to normal f77 array)

« Handle types typedef'd to size t (iBase_ EntityHandle,
iBase EntitySetHandle, iBase TagHandle, iMesh_Instance)

« Strings: char*, with length passed by value after all other args

« Enum's: values (iBase_ SUCCESS, etc.) available for comparison
operations, but passed as integer arguments

— Fortran: named parameters

"2 Scientific Discovery through Advanced Computing 87

Argument

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

landling Conventions

Issue

FORTRAN

SIDL

Function Names

iIXxxx_ prefix

Same as C

Removed iXxxx_ prefix; SIDL interface
organization

Interface Handle

Typedef'd to size t, as type
iIXxxx_Instance; instance handle is
1% argument to all functions

#define'd as type Integer; handle
instance is 1% argument to all
functions

Interface type derived from sidl.Baselnterface

Enumerated Variables

All arguments integer-type instead
of enum-type; values from
enumerated types

Same, with enum values defined as
FORTRAN parameters

Int-type arguments; enumerated types defined
in iIXxxx:: namespace, and values appear as
iXxxx::enumName_enumValue

Entity, Set, Tag Handles

Typedef'd as size_t; typedef types
iBase_EntityHandle,
iBase_EntitySetHandle,
iBase_TagHandle

#define'd as type Integer

Handles declared as SIDL opaque type
(mapped to void* in C/C++ server)

Lists - In: X *list, int occupied_size Same, with Cray pointers used to - In: sidl::array<X> list, int occupied_size
- Inout: X **list, int reference arrays (see FindConnectF |- Inout: sidl::array<X> &list, int
*allocated_size, int example &occupied_size
**occupied_size - sidl::array class memory allocation
- malloc/free-based memory
allocation/deallocation
String char*-type, with string length(s) at | char[]-type without extra length sidl::string type without extra length argument

end of argument list

argument (this length gets added
implicitly by FORTRAN compiler)

SciDAC

Scientific Discovery through Advanced Computing

88

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

MORNING SESSION HANDS ON

Scientific Discovery through Advanced Computing

THE
UNIVERSITY OF
BRITISH
COLUMBIA

YA Sandia SE STONY
B ‘A @ @Rensselaer Bresk

STATERMSERSTY OF NEW YOR®

BROOKHRVEN H OAK RIDGE NATIONAL LABORATORY 7. Pacific Northwest National Laboratory

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

ITAPS Tutorial:
Afternoon Session

BIDAC

‘Scientific Discovery through Advanced Computing

THE
UNIVERSITY OF
> BRITISH

YA Sandia SE STONY
B ‘A @ @Rensselaer Bresk

COLUMBIA
ETATERMNNERSTY 0F NESY YORY
BROOKHRVEN H OAKRIDGE NATIONAL LABORATORY 7. Pacific Northwest National Laboratory

Tutorial Overview

Morning

Part 1: Introduction

Part 2: Overview of
ITAPS services

Part 3: The ITAPS
Data Model

Part 4a: Basic ITAPS
Interfaces

Hands on exercise:
— Hello iMeshP

©SEDAC

Afternoon

 Part 4b: Advanced
ITAPS Interfaces

 Part 5: ITAPS Software

« Part 6: Experiences
and use in applications

« Part 7: Conclusion

« Hands on exercises:

— Accessing mesh
information

— Partitioning services
through iMeshP

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

PART 4b: Advanced ITAPS
Interfaces

‘Scientific Discovery through Advanced Computing

;&: @ ﬁg{:g:’?ﬂ ST@NY ;I;‘IT“I.'[[:\" ERSITY OF

&) 5. @ Rensselaer Breok 5 i

Kr, of ::Fj STATEUMMERSTY OF NEW YORY : !
BROOKHEVEN H OAKRIDGE NATIONAL LABORATORY) Pacific Notthwest National Laboratory

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

iMesh APl Summary

* Logically arranged into interfaces, but not explicitly
arranged as such in C

— See iMesh.h or iMesh.sidl
« Basic (Mesh): load, save, getEntities,

getNumOfType/Topo, getAllVixCoordinates,
getAdjacencies

« Entity: init/get/reset/endEntlter (iterators),
getEntType/Topo, getEntAdj, getVixCoord

« Arr (Entity arrays): like Entity, but for arrays of
entities

« Modify: createVix/Ent, setVixCoord, deleteEnt

©)SciDAC

2% scientific Discovery through Advanced Computing 93

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

IMesh APl Summary (cont.)

* From iBase:

Tag: create/destroyTag,
getTagName/SizeBytes/SizeValues/Handle/Type

EntTag: get/setData, get/setint/Dbl/EHData, getAllTags, rmvTag
ArrTag: like EntTag, but for arrays of entities
SetTag: like EntTag, but for entity sets

EntSet: create/destroyEntSet, add/remove entity/entities/set,
isEnt/EntSetContained

SetRelation: add/rmvPrntChld, isChildOf, getNumChid/Prnt,
getChldn/Prnts

SetBoolOps: subtract, intersect, unite

 iBase-inherited function names still start with 'iMesh_'to
avoid name collision with other iBase-inherited interfaces
(iGeom, iRel, etc.)

©SciDAC

3% scientific Discovery through Advanced Computing 94

Slightly More Complicated Example:

FindAdjacency (C)

#include <iostream>
#include "iMesh.h"

typedef void* EntityHandle;

int main(

{

int argc, char *argv([])
// create the Mesh instance

iMesh Instance mesh;

int ierr;

iMesh newMesh ("", &mesh, &ierr, 0);
// load the mesh

iMesh load(mesh, O,
&ierr, 10, 0);

"125hex.vtk", "",

// get all 3d elements
iMesh EntityHandle *ents;
. int ents alloc = 0, ents size;
iMesh getEntities (mesh, 0, iBase REGION,
iMesh ALL TOPOLOGIES,
&ents, &ents alloc,
&ents size, é&ierr);

int vert uses = 0;

Sﬁai{)ﬁ%ﬁ::

Scientific Discovery through Advanced Computing

// iterate through them
for (int 1 = 0; 1 < ents size;
// get connectivity
iBase EntityHandle *verts;
int verts alloc = 0, verts size;

i++) |
@

iBase VERTEX,
&verts size,

iMesh getEntAdj (mesh, ents[i],
&verts, &verts alloc,
&ierr); -
// sum number of vertex uses
vert uses += verts size;

free (verts);
) ®

// now get adjacencies in one big block
iBase EntityHandle *allv;
int *offsets;
int allv alloc = 0, allv_size,
offsets alloc = 0, offsets size;
iMesh getEntArrAdj (mesh, ents, ents size,
iBase VERTEX,
&allv, &allv_alloc, &allv _size,
&offsets, &offsets alloc, &offsets size,
&lerr);

// compare results of two calling methods
if (allv _size != vert uses)
std::cout << "Sizes didn't agree" <<
std::endl;
else
std::cout << "Sizes did agree" << std::endl;

return true;

95

FindAdjacency(C) Notes

* Typical inout list usage
. X *list, intlist_alloc = 0, int list_size

. Setting list_alloc to zero OR list = NULL indicates
list is unallocated, so it will be allocated inside
|Mesh_getEnt|t|es

. Addresses of these parameters passed into
iIMesh__getEntities

1.Inout list declared inside 'for' loop
2.Memory de-allocated inside loop

2 scientific Discovery through Advanced Computing 96

Slightly More Complicated Example:
FindAdjacency (Fortran)

program findconnect
#include "iMesh f.h"

c declarations
iMesh Instance mesh
integer ierr, ents
pointer (rpents, ents(0:*))
integer rpverts, rpallverts, ipoffsets
. pointer (rpverts, verts(0:%*))
pointer (rpallverts, allverts(0:%*))
pointer (ipoffsets, ioffsets (0, *))
integer ents alloc, ents size
integer verts alloc, verts size
integer allverts alloc, allverts size
integer offsets alloc, offsets size

c create the Mesh instance
call iMesh newMesh ("MOAB", mesh, ierr)

c load the mesh
call iMesh load(%VAL (mesh),
1 "125hex.vtk"™, "", dierr)

c get all 3d elements
ents alloc = 0
call iMesh getEntities (%VAL (mesh),
‘ 1 $VAL (0), %VAL (iBase_REGION) ,
1 %VAL(iMeSh_ALL_TOPOLOGIES),
1 rpents, ents alloc, ents size,
1 ierr)

SCUIAL

‘Scientific Discovery through Advanced Computing

ivert uses = 0

c iterate through them;

do 1 = 0, ents size-1
c get connectivity
verts alloc = 0 ‘

call IMesh_getEntAdj(%VAL(mesh),
1 %VAL(ents(i)), S%VAL(iBase VERTEX),
1 rpverts, verts alloc, verts size, ierr]
c sum number of vertex uses
vert uses = vert uses + verts size
call free(rpverts)

end do ‘

c now get adjacencies in one big block
allverts alloc = 0
offsets alloc = 0
call iMesh getEntArrAdj (3VAL (mesh),
$VAL (rpents), SVAL(ents size),
$VAL (1Base VERTEX), allverts,
allverts alloc, allverts size, offsets,
offsets alloc, offsets size, ierr)

e

c compare results of two calling methods
if (allverts size .ne. vert uses) then

write (*, "' ("Sizes didn''t agree!™)')
else

write (*,"'("Sizes did agree!")'))
endif
end

97

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

FindAdjacency (Fortran) Notes

1. Cray pointer usage
“pointer” (rpverts, rpoffsets, etc.) declared as type integer
“pointee” (verts, ioffsets, etc.) implicitly typed or declared explicitly
pointer statement equivalences pointer to start of pointee array
pointee un-allocated until explicitly allocated

2. Set allocated size (ents_alloc) to zero to force allocation in
iIMesh_getEntities; arguments passed by reference by
default, use %VAL extension to pass by value; pointers
passed by reference by default, like arrays

3. Allocated size set to zero to force re-allocation in every
iteration of do loop

4. Use C-based free function to de-allocate memory

‘%% scientific Discovery through Advanced Computing 98

Slightly More Complicated Example:
FindAdjacency (SIDL/C++)

#include <iostream>
#include "iMesh.hh"
using std;

typedef void* EntityHandle;

int main(int

{

argc, char *argv[])] .

the Mesh instance
mesh = iMesh: :newMesh ("");

// create
iMesh: :Mesh

// load the mesh
mesh.load (0, "125hex.g", "");

// get all 3d elements
sidl::array<EntityHandle> ents;
int ents size;
mesh.getEntities (O,

iBase::EntityType REGION,

iMesh::EntityTopology ALL TOPOLOGIES,
ents, ents size);

int vert uses = 0;

‘Scientific Discovery through Advanced Computing

// iterate through them; first have to get an
// Entity interface instance
iMesh::Entity mesh ent = mesh;
for (int 1 = 0; 1 < ents size;
// get connectivity
sidl::array<EntityHandle> verts;
int verts size;
mesh ent.getEntAdj (ents[i],
iBase::EntityType VERTEX,
verts, verts size);
// sum number of vertex uses
vert uses += verts size;

i++) |

// now get adjacencies in one big block
sidl::array<EntityHandle> allverts;
sidl::array<int> offsets;
int allverts size, offsets size;
iMesh::Arr mesh arr = mesh;
mesh arr.getEntArrAdj (ents, ents size,

iBase::EntityType VERTEX,
allverts, allverts size,
offsets, offsets size);

// compare results of two calling methods
(allverts size .ne. vert uses) then

cout << "Sizes didn''t agree!” << endl;

else cout << "Sizes did agree!" << endl;

if

return true;

99

FindAdjacency (SIDL/C++) Notes

1. Static function on iMesh class used to instantiate
interface
2.List declaration using SIDL templated array

3.getEntities member function called on iMesh
iInstance

4.Assignment operator-based cast to iMesh::Entity
interface

5.Declaration of list inside for loop; re-constructed on
every iteration, and de-constructed using use counts

©)SciDAC
: 100

B Scientific Discovery through Advanced Computing

FindAdjacency Makefile

include /home/tautges/MOAB gcc4.2/1lib/iMesh-Defs.inc

FC = gfortran-4.2
CXX = g++-4.2
CC = gcc-4.2

CXXFLAGS = -g

CFLAGS = -g

FFLAGS = -g -fcray-pointer

FLFLAGS = -g -L/home/tautges/gcc-4.2/1ib -L/usr/lib/gcc/i486-1linux-gnu/4.2.1 -

lgfortranbegin -lgfortran -1m

FindAdjacencyS: FindAdjacencyS.o
$(CXX) $(CXXFLAGS) -o $Q@ FindAdjacency.o ${IMESH SIDL LIBS LINK}

FindAdjacencyC: FindAdjacencyC.o
$(CC) S (CFLAGS) -o $@ FindAdjacencyConnectC.o S${IMESH LIBS LINK}

FindAdjacnecyF: FindAdjacencyF.o
$(CXX) -o $@ FindAdjacencyF.o $(FLFLAGS) S${IMESH LIBS LINK}

.Cpp.o:
${CXX} -c S${CXXFLAGS} S{IMESH INCLUDES} $<
.CC.O:

S{CC} -c S$S{CFLAGS} ${IMESH_INCLUDES} S<
FLo:

${FC} -c ${FFLAGS} S{IMESH INCLUDES} $<

ISERAC

“Scientific Discovery through Advanced Computing 101

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

ListSetsNTags Example

e Read in a mesh
 (Get all sets

* For each set:
— Get tags on the set and names of those tags
— If tag is integer or double type, also get value
— Print tag names & values for each set

« Various uses for sets & tags, most interesting ones involve
both together
— Geometric topology
— Boundary conditions
— Processor decomposition

2 scientific Discovery through Advanced Computing 102

ListSetsNTags Example (C)

#include "iMesh.h"

int main(int argc,
{

char *filename = argv[1l];

char *argv][])

// create the Mesh instance
iMesh Instance mesh;
int err;
iMesh newMesh (NULL, &mesh, &err, 0);
iBase EntitySetHandle root set;

iMesh:getRootSet(mesh, &roat_set, &err) ;

// load the mesh
iMesh load(mesh, root set, filename,
&err, strlen(filename), 0);

NULL,

// get all sets
iBase EntitySetHandle *sets = NULL;
int sets alloc = 0, sets size;
iMesh getEntSets (mesh, root set, 1, &sets,

&sets alloc, &sets size, &err);
// iterate through them

iBase TagHandle *tags = NULL;

int tags alloc = 0, tags size;

int i, j;

for (i = 0; i < sets_size; i++) |

// get connectivity
iMesh getAllEntSetTags (mesh, sets[i],

&tags, &tags alloc, &tags size, &err);

Scientific Discovery through Advanced Computing

if (0 != tags size) {

printf ("Set %$1d: Tags:", sets[i]):

// list tag names on this set

for (jJ = 0; J < tags _size; J++) {
char tname[128];
int int val, tname size, tag type;

double dbl val;
iMesh getTagName (mesh, tags[]], tname,
&err,
printf ("%s", tname);
iMesh getTagType (mesh, tagsl[j],
&tag type, é&err);
. i1f (iBase INTEGER == tag type) {
iMesh getEntSetIntData (mesh, sets[i
tags(j],
printf (" (val = %d);", int val);
}

else if (iBase DOUBLE == tag type) {

iMesh_getEntgetDleata(mesh, sets[i],
&err) ;

tags([J],
printf (" (val = %£f);",

&dbl val,
dbl val);

}

else printf("; ");

}

}
printf ("\n");
free(tags); tags = NULL; tags alloc = 0;
}

return 0;

tname size);

1y
&int val, é&err)

4

103

ListSetsNTags Example Notes

 Enumerated variables passed as int, compared to
enum types (e.g. iBase SUCCESS,
iIBase INTEGER)

104

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

IMesh Interface Review

« Data model consists of 4 basic types: Interface, Entity, Entity
Set, Tag

* Applications reference instances of these using opaque
handles

* |ITAPS interfaces use C-based APIs, for efficiency and
Interoperability
— SIDL-based implementation also available, which works through C-
based API
* Not covered here:
— lterators (intermediate-level, “chunked” access to mesh)

— Modify (relatively coarse-grained, basically create and delete whole
entities)

— Set parent-child links

©SciDAC
Y

‘2% scientific Discovery through Advanced Computing 105

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

Parallel Mesh Interfaces

Scientific Discovery through Advanced Computing

THE
UNIVERSITY OF
BRITISH
COLUMBIA

A o NY
B ‘A @E:. & Rensselaer T

STATERMSERSTY OF NEW YOR®

BROOKHRVEN “ OAK RIDGE NATIONAL LABORATORY 7. Pacific Northwest National Laboratory

IMeshP extends iMesh to support
parallel computations

Example functionalities directly supported by iMeshP:

* Loading meshes onto parallel computers

« Maintaining relationships between mesh entities on different
parts including boundary and ghost data

« Communicating tag data between parts

* Moving mesh entities between parts and re-establish
communication links

Sufficient for building services such as:
« Parallel mesh generation/improvement/modification
» Partitioning and repartitioning

©SciDAC

‘2% scientific Discovery through Advanced Computing 107

Recall the partition model defined by ITAPS
the iIMeshP parallel interface

* Process: a program executing; MPI process
— # of processes == MPI_Comm_size
— Process number == MPI_Comm_rank
* iMesh instance: mesh database provided by an
implementation
— One or more instances per process
» Partition: describes a parallel mesh
— Maps entities to subsets called parts
— Maps parts to processes
— Has a communicator associated with it

« Ownership: right to modify an entity

« Internal entity: Owned entity not on an interpart boundary

« Part-Boundary entity: Entity on an interpart boundary

* Ghost entity: Non-owned, non-part-boundary entity in a part
« Copies: ghost entities + non-owned part-boundary entities

O SclDAC
2" scientific Discovery through Advanced Computing

IMeshP Partition AP| Functions

* Create partition
— Accepts pointer to MPlI Communicator or NULL
— IMeshP__createPartitionAll

* Destroy partition
— IMeshP_destroyPartitionAll
* Sync partition

— After parts are added/updated, compute and store global
information about the partition

— IMeshP_syncPartitionAll
* Return number of parts in partition
— IMeshP_getNumParts
* Return global number of entities of given type/topology in
partition
— May require collective communication
,¢ RACMeshP getNumOfTypeAll, iMeshP_getNumOfTopoAll

2% Scientific Discovery through Advanced Computing 109

Part characteristics

* Think in terms of parts, not processes

— Number of parts may be less than, equal to, or
greater than number of processes

« Part contains entities it owns + copies of
entities needed for computation within the part

* Wholly stored in a single process

* Accessed and identified via part IDs
— Unique global identifiers for parts

* Local (on-process) parts also can be accessed
through part handles

“*scientific Discovery through Advanced Computing -

IMeshP Part AP| Functions

Create part and add to partition.
— IMeshP__createPart

Remove part and destroy it.
— IMeshP_destroyPart

Return part neighbors.

— Parts A and B are neighbors if Part A has copies
of entities owned by Part B or vice versa.

— IMeshP_getNumPartNbors, iMeshP_getPartNbors

lterate over part-boundary entities.
— IMeshP_initPartBdryEntlter

©SEDAC

S sctentific Discovery through Advanced Computing .

IMeshP Part AP| Functions

« Part handles can be used as set handles.
— iMesh functions overloaded to take part handles.

« Examples:

— Add and remove entities from part with
IMesh_addEntToSet and iMesh_rmvEntFromSet.

— Get number of entities in part with
IMesh_getNumOfType, iMesh _getNumOfTopo.

— Get info for entities in part with ilViesh getEntities,
IMesh_getVixArrCoords, iMesh_getAdjEntities,
etc.

/ SciDAC

S scientific Discovery through Advanced Computing 112

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Entity Characteristics

* No globally uniqgue entity IDs are required or supplied.
— Can be constructed by user as pair: [part ID, entity handle].

« Each entity is owned by only one part per partition.
— Ownership grants right to modify.

* Entities may be copied on other parts.

* Duplicated information for copies:

— Owner of an entity knows remote part and remote entity
handle of all its copies.

— All boundary entities know all remote parts and remote
entity handles of all copies.

— All ghost copies of entity know the entity owner’s part and
the entity handle on the owner.

 Remote parts and entities are computed by a collective
function called after mesh modification.

e 4 -~ Queries for remote data do not require communication.

‘2% scientific Discovery through Advanced Computing 113

IMeshP Entity APl Functions

« Determine ownership of entity.
— iMeshP_getEntOwnerPart, iMeshP_isEntOwner

* Determine whether entity is internal, boundary, ghost.
— iMeshP_getEntStatus

« Return remote part and remote entity handles for
copies of entity.
— iMeshP_getNumCopies, iMeshP_getCopyParts,
iMeshP_getCopies, iMeshP_getCopyOnPart
« Return owner part and owner entity handle for an
entity.
— iMeshP_getEntOwnerPart, iMeshP_getOwnerCopy

: mmmmmm Advanced Computing 114

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Ghost Entities

« Create ghost entities for each part.
— IMeshP_createGhostEnts
— Specify ghost-entity dimension, bridge dimension,
and number of layers.

* E.g., one layer of ghost triangles for all boundary
triangles sharing edges: .

— Ghost-entity dimension = 2
— Bridge-entity dimension = 1
— Number of layers = 1

_ Cumulative over multiple calls. - .
* Delete all ghost entities.
— IMeshP_deleteGhostEnts

116

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

A«v

.eeeee .

%,mv...z

Aﬂv

wilie ix
iv A A .
e

Vﬁq

{ NZ
f»xxﬂv

;xxaf

s

modification.
— Update mesh database during mesh modification.

balancing.
— Migrate small numbers of entities for, say, mesh

— Migrate large numbers of entities for, say, load

operations on mesh entities.

* IMeshP provides functions for inter-part
— Exchange tag values.

Inter-part Mesh Operations

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Inter-part Mesh Operation Requests

 |nter-part mesh operations are coordinated
via IMeshP Requests.

— More than an MPI_Request!

— Indicate status of a given iMeshP mesh operation.
« Migrate entity.
« Update vertex coordinates.
» Update part-boundary entities.
» Exchange tag data.

— iMeshP encodes type of request and operations to
be performed in iMeshP_Request.

— IMeshP_Request completes when entire mesh
operation is completed.

*omw- Bclentiﬂ Discovery through Advanced Computing H

Inter-part Mesh Operations can be ITAPS
blocking or non-blocking.

« Blocking operations do not return from
IMeshP until request is complete.

* Non-blocking operations return from iMeshP
after request is made. Application later waits
until request is fulfilled.

— iIMeshP API contains functions to ...
« Wait for request completion,
» Test for request completion, and
 Poll for and carry out requests received.

— Allows overlapping communication/computation.
— Allows asynchronous communication.

‘2% scientific Discovery through Advanced Computing 118

ITAPS

Communicate Entity Tag Data

* Entity owners send tag data to copies.

* IMeshP API provides both blocking and
non-blocking versions of tag-data exchange.
— IMeshP_pushTagData, iMeshP_iPushTagData

119

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Large-Scale Migration

 In application, each part calls iMeshP to migrate (push)
array of entities to new parts. (iMeshP sendEntArr)
— IMeshP computes and posts appropriate receives.
— IMeshP sends entities to new parts.
— iMeshP deletes entities from old parts.
— IMeshP returns an iMeshP_Request.

* Application does something else for awhile.
 In application, each part calls iMeshP \Wait function with
the iIMeshP_Request returned by send.

— IMeshP waits to receive messages

— iMeshP adds entities to ROZZa
new parts and updates mesh. % BN

aclmtiﬂcl)iscoverythroughhdvanced Computing 129

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Updating Mesh Consistency

 After all mesh modification is done, application calls
IMeshP_syncMeshAll.

— A collective, blocking call that signals mesh modification
operations are completed.

— Polls for and processes outstanding requests.
— Updates ghost entities for modified mesh.

— Performs operations needed for parallel mesh
consistency.

". l“l
O Scil ugh Advanced Computing 121

Parallel I/O

 Load a mesh from files.

— Populate a mesh instance and a partition handle.
— IMeshP_Load

* Write a mesh to files.
— Store mesh data and partition data in files.
— iMeshP_Save

* Options specified through parameter strings.

— File names, file format, number of files, initial
partitioning.
— Analogous to iMesh load and save functions.

""-‘“"’-‘* Bclentiﬂ ¢ Discovery through Advanced Computing 122

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

PART 5: ITAPS Software

Scientific Discovery through Advanced Computing

THE
UNIVERSITY OF
BRITISH
COLUMBIA

A o NY
B ‘A @E:. & Rensselaer T

STATERMSERSTY OF NEW YOR®

BROOKHRVEN “ OAK RIDGE NATIONAL LABORATORY 7. Pacific Northwest National Laboratory

ITAPS Web Pages

http://www.Itaps- scidac.org

Ele ESt Wew Go Bookmaks Jods Help
@ - - S L hup it scida.ong! [+ @ca [IG

| R Mat, Inc. | Reed Hat Network |)Support (15hop (1 Products (1 Training

Provides help getting started
« Usage strategies
Data model description e

with sophisticated geemelry, mesh, and field jian tasks, pari s computer mave loward
the petascale. The Center for ies for Adv s i ITAPS) will deliver

u ineroparabla and inarchangeable mash, gaamatry, and feld manipulation sandces that are of diract use 1o SeiDAC

[) C C e S S to I n te rfa Ce applications. The premise of our goal is that such servi an be provided as libraries that

can be used with minimal intrusion into application codes. Through ScDAC-1 funding, the ITAPS team developed

and degloyed a number of advanced technalagies induding front tracking, mesh quality improvement via smoothing

The Interoperable Technologies for Advanced
Petascale Simulations (ITAPS) Center

The T ies for i (ITAPE) center is one of the mathematics

antific Discovery through G

and swapping, and adaplive mesh refinement (AMR), that ware used by application scientists and provide ample

L] L] Ll L]
S eCI I Catl O n S d OC m e ntatlo n crmen_n——
b Ll b Gaing forward, we will santinue ta develop the mest pramising of the technalogies identified in SEDAC-1 and invest

in critical new areas identified by SGDAC applicalion teams. In particular, we will develop new geometry, mesh, and

field services that suppon PDE ined design opi on e, mesh ali ,

. "
I I I I | I I I I I t t I l l AMB-trart mching, solution transfer . dynamic and other parallel tools for
petascale simulations. Underlying these services are the comman interfaces that provide data-structure neutral

accass to mesh, geametry, and field information, These interaces are the kay 1o providing unifarm access ta all

ITAPS tools and 1o creating i ility among ITAPS ies. Using these we will work with

scientists p the next of petassale codes. In particular, we will continue our,

L] L]
. already strong collaborations in accelerator modeling. fusion, and microbial call modeling and have |dentified new
areas for collaberation In astreghysics. mdiation transport, and greundwater flow madeling.

Copyright © 2001-2007 taps-scidac org | Validate [
Done

124

Interface implementations are well

underway

%
L@

IMesh 0.7 Interface complete

IMeshP 0.5 specified and alpha implementations
underway

IGeom and iRel 0.7 interfaces complete
Implementations

— iMesh: FMDB, GRUMMP, NWGrid, MOAB

— iMeshP: FMDB, MOAB

— iIGeom: CGM (Acis, OpenCasCade)

— IRel: Lasso

Interfaces have been used to build services and
test interoperability

Analyzing performance when using interface

ISCEDAC

" Scientific Discovery through Advanced Computing .

ITA

INTRROPERAFLE TCOLS FOR ADVANOED PRTASOALE

Interface Software Access

<

 Links to the interface user Fr=——m=——
guides and man pages f s
where available

L . k t . I t t .
|] n | | Interface Software medel. A key aspect of our approach is thal we do nol enforce any paricular data structure or implementation wilh
i our intert, i only that certain questions about the geometry, ms or field data can be answered through
, , Gelling Starled calls 1o the interface. One of the most challenging aspects of this effont remains balancing performance of the

Usage Strategles Intertace with the flexibility neaded to support a wide variaty of data types. Perfarmance (s critical lor kemeal

ITAPS Interfaces

Interface Specifications

The next step to creating interoperable technologies is to define common interfaces that support the abstract data

Data Madel D ing mesh and g y access, and to address this need, we provide a number of different

. . access pattens including individual iterator-based and agg array-based reg Further arise
— Ve rS I O n O 7 CO m a t I b I e when considering the support of many difierent scientific programming languages which we address using 2
- two-pronged approach. First, we provde a C-language binding for our interfaces that is compatible with most needs
in scientific compuling. Additional Nlexibility, albeil al a somewhat higher cost, is suppored through the use of the

S OftW a re SI0L/Babal tachnology provided by the Common Companant Architactura Forum (CCA).

There are live ITAPS inlerlaces, lour thal comespond lo the core dala model components, Geomelry (iGeom), Mesh
(IMesh), Fields (IField), and Data Relation Managers (iRel) and one that contains the utilities and definitions used by

(]
maorne than one of the core interface (iBase). These interfaces are developed primarily by the ITAPS research leam,
I I l S O e O I I I e p a g e S but the discussion is open (for more information, contact Lan Diachin). in the table below, each afthe intertaces is

briefly described and links to the interface specification and user guides are given.

for more information .

Interface Descriplion Documentation

Utilitiae and definitions used in multipla ITAPS cora intarfacas Usar Guida
such as entity type and topology defintions, creation status, tag Documentation

¢ S|m ple exam p|eS, . I wotibiiraetinall vl .
compliance testing tools

and build skeletons

“Scientific Discovery through Advanced Computing 126

FMDB Implementation

Supports general set of mesh topologies

Strengths are: adaptively changing meshes,
flexible adjacency information

Formal partition model supports parallel operations
IMesh implementation is complete

IMeshP implementation is alpha; current
successful tests include functions required for
some mesh adapt functions, partitioning, and
migration

Application use includes Fusion, Accelerators, and
CFD

©SciDAC

‘2% scientific Discovery through Advanced Computing 127

MOAB Implementation

Supports hex, tet, prism, pyramid, tri, quad

— Reads meshes generated by CUBIT, including
geometric topology and a few other common formats

« Strengths are efficient memory management

* [Includes tools for
— OBB and kd tree construction and query
— Read CGM/iGeom model & save as mesh-based model
— Solution coupling

« Complete implementation of iMesh, iMeshP

» Application use includes nuclear reactor
modeling, neutron transport, accelerator design

_____optimization

"2 Scientific Discovery through Advanced Computing 128

GRUMMP Implementation

e Supports tri, quad, tet

« Strengths are: tri/tet meshing, mesh
iImprovement and adaptation

* iIMesh implementation is complete
* iIMeshP implementation is planned

 Application use includes CFD, especially
aerodynamics and non-Newtonian fluids

©SciDAC

3% scientific Discovery through Advanced Computing 129

NWGRID Implementation

Supports hex, tet, pyramid, tri, quad and
hybrid meshes

Strengths are: adaptive mesh refinement and
dynamic mesh reconnections for simplex
meshes

Supports shared memory parallelism using
Global Arrays

IMesh implementation is complete
IMeshP implementation is in process

Application use includes biology,
CFD/CMM/CEM, subsurface transport

©SciDAC

‘2% scientific Discovery through Advanced Computing 130

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Performance

[- -

« Large applications balance memory and cpu time performance
« Implementations of iMesh vary on speed vs. memory performance
— Create, v-E, E-v query, square all-hex mesh
— Entity- vs. Array-based access
« Compare iMesh (C, SIDL), Native (MOAB), Native Scd (MOAB), CUBIT

— Ent-, Arr-based access
— All-hexahedral square structured mesh

Memory (MB)

000 Memory Usage 100 Total CPU Time
800 |+ Native Scd CUBIT . 90 m =

v Native Arr SIDL Ent 80 v Native Arr SIDL Ent
700 | a Native Ent SIDL Arr A Native Ent

» SIDL Arr C Arr 70 » SIDL Arr >
600 7 | sipL ent < SIDL Ent C Ent

60

500 —|—|* CAT M C Arr

x CEnt C Ent . 50 = CEnt
400 T m Cubit — B Cubit ™

~Native Ent 40 5 CArr —

300 Native Arr Natlve Scd———
200 /
100 %/ Native Scd

8 0 1 2 5 6 7 8
Elements Elem ents (million) 31

Performance in building a finite TAPS
element stiffness matrix

« Set up a simple stiffness matrix Veu = f
for a 2.D diffusion equ.atlon | u(x=0)=1 u(x=1) = 1
« Examine costs of entity access via
native data structures, arrays, u,(x=0, x=1) =0
entity iterators and workset
iterators — -
- Arrays minimize time overhead S
but require a data copy E |23
+ Entity iterators are straightforward 17" ot
to program, minimize memory Entity Iterator 11642 | 11.1%

overhead, but maximize time cost [Workset lterator (1) | 11351 | 8.3%
Workset lterator (3) 11183 | 6.7%

» Entity array iterators balance Workset Iterator (5) | 11119 | 6.1%
' Workset Iterator (10) | 11095 | 5.8%
tlme/m.er.nory tradeOffS bUt are the Workset lterator (20) | 11094 5.8%

. most difficult to program

P
‘;9 |i:'5 [s]NJL Y IS A 1N, N
“22% Scientific Discovery through Advanced Computing 132

ervices Software Access

* Links to the services built on I
th e | T AP S | N te rfa ces L e Howla

« Currently or very soon to be
available
— Mesquite (C, SIDL) —
— Zoltan (C, SIDL) e A Ao T

SCE e prototyping expenments. In addition 1o providing access to your mesh and geometry data through the ITAPS

interfaces, you will also need 1o call the service-specific APIs 1o invoke the hinctionality provided by each service.

— Swapping (SIDL S _

ITAPS currently provides a number of services based primarily on the iMesh intertace specification, As SciDAC-2

ITAPS Component Services Software

ITAPS researchers are working to develep a number of companent services that are of direct use to apglication
sclentists that access the necessary mesh and geometry through the ITAPS interinces. To use thess

services, you must implement at least a subset of the commen interfaces defined by the ITAPS team to provide

access o your mesh, and if necessary, geometry data. In many cases, only a partial imglementation of the interface

Is required and this Is described on a by basts . you may quickly try these services 1o

centinues, we expect 1o add more services both atthe level and at the senvices level.

F "
ro | I t I e r S I D L We believe thal the software provided here is compliant with v0.7 of the ITAPS iMesh, iGeom, and iRel interfaces. All

are believed 1o compile under Linux gecig++3.2.3. lf you have any preblems with the sofiware downloads build or
use process, please do not hesitate to contact us.

— Vislt Plug In (C, SIDL oo

Namea POC Deunpuon Intartace Mara
[] Requirements InfoDownload
° |_ in k S to h ome p a g es fo r more P O TR TS P e i
[SHL imgrovment via node [obtain verex Informaticn /
. . P . many 3 Daownload
mesh types and adjacency (wo.7)
information

* |nstructions for build and links
to supporting software

SciDAC

“Scientific Discovery through Advanced Computing 133

Implementing ITAPS interfaces allows ITAl
use of services on your data structures

* Need to implement some ITAPS interface functions
using your data structures — BUT NOT ALL

« Most ITAPS functions reflect things you already do
with your databases; most implementation tasks are
a thin wrapper

« Compliance testing tools ensure correctness

« Can use a reference implementation at the cost of a
data copy to experiment with services

_ J R Component
Application w/ High Level - Service 3
—— OwnData Integrated Service Component
QG—D : Senee 2
Component
Service 1

©SciDAC

¥4 Scientific Discovery through Advanced Computing 134

Interface functions needed by the ITAPS
various services

/)

S | % S| e 3

212132 |88 5 | =

Sl s |R |5 |2|el|ls|§|s

o Q\ L E -8 2] (@) o () _'CE

S|l |8 |s|a|&|&8]0 |8
Mesquite 1 1 4 4 1 2 13 6 | 32
Swapping 1 1 4 4 2 12
Mesh Adapt | 1 2 3 3 3 / 13 34
FronTier Lite| 3 1 9 3 3 3 18
Zoltan 1 2 5 14 22
Vislt 1 1 9 3 1 16 31

©SciDAC

=% scientific Discovery through Advanced Computing 135

Notes regarding the interfaces ITAPS
needed by services

« Basic functionality such as vertex query, adjacency
information, get type/topo are widely used

« Swapping needs efficient, correct iterators under
modification

« Mesquite relies on tags and set boolean operations
that may impact performance

 Vislt visualization routines require tag
Implementations to retrieve data to be analyzed

 MeshAdapt and Zoltan both use parallel interface
functions for setting and getting partition data as well
as exchanging data among processors.

©SciDAC

‘2% scientific Discovery through Advanced Computing 136

Performance of iMesh Swap for 3D [TAPS
Meshes

 Comparing GRUMMP native implementation to service
with GRUMMP iMesh implementation

* Most remaining overhead is in transcribing data to
return format expected by iMesh

Case # of Native iMesh

Tets | Swaps Rate (1/s) Swaps Rate (1/s)
Rand1 5104 10632 29500 10838 21300
Rand2 25704 65886 27700 67483 22100
Airplane | 251140 25448 3380 28629 2800
Rocket 464080 53331 3540 59330 2790

©SciDAC
(@

2% scientific Discovery through Advanced Computing 137

Performance of Zoltan Partitioning for
3D Meshes

« Comparing MOAB native implementation linking to
Zoltan partitioning service with the MOAB iMesh
Implementation

« Using a coordinate bisection geometric partitioner on
tetrahedral meshes and array-based access to the
data

Number | Native IMesh IMesh
of Tets (sec) (sec) | Overhead
15591 0.866 0.869| 0.35%
20347 0.971 0.976| 0.51%
34750 1.28 1.31| 2.34%
54383 1.72 1.75| 1.74%

100630 2.76 2.82| 217%

3% scientific Discovery through Advanced Computing 138

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Compliance testing is your friend

(54
A 1L, I

Why bother?

Confirm an implementation complies with iMesh spec --- enhances
interoperability

Confirm that a partial implementation supports a service ---
ensures plug-and-play with services

About the compliance test suite

Covers all functions

Supplements documentation with unambiguous software
interpretation of interface

Coordinate and adjacency checks rely on consistency between
different retrieval strategies

Set and tag functionality testable directly
Builds just like any other iMesh application

@ SciD [{CWork in progress on testing partial implementations effectively

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

ITAPS Interfaces: Best Practices

« Use C-based interface where possible, for efficiency

* Pre-allocate memory in application or re-use memory
allocated by implementation

— E.g. getting vertices adjacent to element — can use static array, or
application-native storage

« Take advantage of implementation-provided capabilities
and iMesh compliant services
— Partitioning, 10, parallel communication, (parallel) file readers
« Try different implementations: they are tuned for different
application uses — Experiment!

* Implement iMesh on top of your data structure
— Take advantage of tools that work on iMesh API

* Let us help you

— Not all best practices are easily described or self-evident

B Seientific Discovery through Advanced Computing @

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

PART 6: Using ITAPS: Approaches
and Experiences

NY Ao /ERSITY OF
B A (W)=, @ Rensselaer %@;ﬁ =5

BR SH
COLUMBIA

BROOKHRVEN [l 01K RIDGENATIONAL LABORATORY g kacificNorthwestNational Laboratory

ITAPS impact SciDAC applications In [TAPS
three ways

» Direct use of ITAPS technology in applications

— Geometry tools, mesh generation and optimization for
accelerators and fusion

— Mesh adaptivity for accelerators and fusion
— Front tracking for astrophysics and groundwater
— Partitioning techniques for accelerators and fusion
 Technology advancement through demonstration and
insertion of key new technology areas
— Design optimization loop for accelerators (w/ TOPS)
— Petascale mesh generation for accelerators
« Enabling future applications with ITAPS services and
interfaces

— Parallel mesh-to-mesh transfer for multi-scale, multi-
physics applications
— Dynamic mesh services for adaptive computations

@SciDAC

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

Case Study 1: Incorporating Parallel
Adaptive Applications

BROOKHRVEN ol 04K RIDGE NATIONAL LABORATORY 7 Pacitic Notthwest National Labotatory

== Accelerator

Parallel adaptive loops

® . Petascale
Petascale AR <hEEs y Adaptive \30'““0” Mesh
Front tracking Optimization Transfer .
Integrated Loo Generation
Tools ﬁ
Build on
v
Front Mesh |+, Dynamic " Ngeom/Mesh
Component tracking Improve ‘._Seice ervices
Tools B < -
Are unified
by
Common
Interfaces

SERAC. - | 144

Parallel Adaptive Applications

» Parallel adaptive application requires
integration of parallel components for

— Unstructured grid solver

— Error estimation and mesh size field construction
— Mesh adaptation

— Dynamic load balancing with repartitioning

» With these components ITAPS has
constructed parallel adaptive applications

©SciDAC

¥4 Scientific Discovery through Advanced Computing 145

Adaptive Loop for SLAC ITAPS
Accelerator Design

— Components:
* ACIS CAD modeler, Omega3P
* ITAPS/SCOREC mesh adaptation
* Error estimations

Initial mesh (1,595 tets) Adapted mesh (23,082,517 tets)

L s &
A
et

SCEDAC

Adaptive Mesh Refinement for SLAC I[TAPS
Accelerator Design

— Higher order finite element time domain analysis in SLAC
— Require local mesh refinement around the particle domain

m Controlled refined meshes 1-1.5M
m Uniformly refined meshes 6 M

CIlDAC

147

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

ing for SLAC

ive Mesh Curv

Adapt

Ign
— Higher order finite element analys

Accelerator Des

- Omega3dP

is engine

from SLAC

— Valid higher order curvilinear mesh - adaptive mesh curving

correction tools from ITAPS/SCOREC
— Improved solution accuracy and efficiency

-
IW
s
=
3
3
z
4
-
-
=
=
=
i
-
-
-
-
-
-
i
-
-
-
-
-
-
-
-
- 4
"

W
]
=
>
1]
(&}
TR
o
(=)}
[=
=
]
=
=}
c
=]
et
[+1]
[=1
=}
w
[22]
u—
[=]
.
=
=
=]
£
[=]
=
C
(=)
o
=

m 2.97 million curved regions

m 1,583 invalid elements corrected

m |[ead to stable simulation and

Expanded views of Input and HOM couplers

execute 30% faster

Fields in beam frame moving at speed of light

o VA VAV RN

= AT AT A

L P W W N

0
Ty

L P A N 3

e i Ve I

AT AT AVAANE

v v aara"

At

i Y W i
AT AN AVATAYAY
i

.

v
RSOl

..Lw}Abi’ Lty
SRR

i

VAV AT AN AVAY AL
[TTAYAVAPANAVATND!
I TAVANAVAVAVLYIY
i 2 N VW W WA P

(O
A NANA AV
o i

AN AN R
AN AVATATI
\SiaaSavin

v AT

i
S AAN VAV RYATAYS

LA SR
SEi RS

148

!

8-cavity cryomodule simulation

AC

1

&

CL
* Scientific Discovery through Advanced Computing

S

Adaptive Loop for PPPL
CEMM M3D-C1 MHD Simulations

— Restructured M3D-C1 to support general unstructured meshes

— Provided API level for interacting with mesh and solvers
(three-way interactions between CEMM, ITAPS and TOPS)

— Developed initial
anisotropic mesh
adaptation procedure

— Extending code to
deal with complex
boundary conditions
on curved domains
using the high order :
M3D-C1 elements

iy

H acmun very through Advanced Computing 149

PHASTA Flow Simulation Code

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

— Parallel finite element flow solver
« compressible and incompressible flows
» Turbulence DNS, LES, RANSS/DES
» Two-phase (immiscible) fluids

— Implicit time integration -

« solution of linear algebra at each time step using iterative solvers
— Breaks the total domain into parts with roughly the same

number of elements on each processor.

— Work can be characterized as requiring:
« Substantial floating point operations to form equations

» Organized, substantial, and regular communication
between partitions that touch each other

» For each iteration (O(10) iterations per solve),
there is a required ALL-REDUCE communication

‘2% scientific Discovery through Advanced Computing

150

Scalabllity of the Solver

Left lliac

Rightlliac| @

« Adapted mesh had
> 50M dof

 Must be solve in 10 min.

— Implicit FE flow solve scales

Proc. |t (sec) |scale
16384 | 60.6 1.04
8192 | 131.7 | 0.957
4096 | 241.6 1.04
2048 | 502.3 1.00
1024 |1 1008.7 | 1.00

151

Patient Specific Vascular Surgical ITAPS
Planning (Stanford, RPI)

— Virtual flow facility for patient specific surgical planning
— High quality patient specific flow simulations needed quickly
— Image patent, create model, apply adaptive flow simulation

Path - Mesh . :
Load CT image planning S;%Qﬁ?é%%ﬂﬂg& gen,%ration Simulation
W

Abdominal Aortic Aneurysm

ITAPS

Speed (cm/s)

Right
Renal

Right Iliac

Leftlliac

Speed (cm/s)

125

105

85

65

45

25

80

Time (s)

Speed vs time

Speed vs time
A
L/ A
' A
(. .
I A A &
“A A A _-A"‘A [N W
0.2 04 0.6

64

48

Meshas (

Meshas (

)

153

Pellet Ablation for Tokamak Fuelling

« Goals: Adaptive Meshing and Front Tracking for
“microscale” studies of pellet ablation in tokamaks with
subgrid models for with macroscale pellet simulation

* People involved: R. Samulyak, T. Lu, BNL P. Parks,
General Atomics (Application)

« Based on Front Tracking. Code Includes:

* Kinetic model for interaction with hot electrons
« Surface ablation model

« Equation of state with atomic processes

« Cloud charging and rotation models

New conductivity model (ionization by electron impact)
ITAPS Services Used VR — y—

Front tracking tracking

©SciDAC

’Jfﬁ Discovery through Advanced Computing 154

Pellet Ablation for Tokamak Fuelling

« Code validation and benchmarks with other hydro studies

 First systematic “microscale” MHD studies of pellet ablation
physics

* Revealed new properties of the ablation flow (supersonic
rotation of the ablation channel)

« Explained the factor of 2.2 reduction of the ablation rate in

hydrodynamic models with directional heating
 In the literature, it was incorrectly attributed to the directional heating;
we showed it was caused by Maxwellian electron heat flux vs.
Distributions of the Mach number of

monoenergetic
IZI:E IZI:E- ‘E I2 1.4 1.6
the ablation flow near the pellet ‘

05 1 15 2 25 3 35 4 45 5

“Fscientific Discovery through Advanced Computing z,cm >

a L.2 0.4

Adaptive Loop Construction Experiences

« |ITAPS interfaces provide needed functionality to
support adaptive mesh modifications
— IMeshP supports mesh interactions
— Zoltan supports needed dynamic load balancing
— Interacting with solver for error estimation requires fields

« Reasonable straight forward to construct adaptive
loops Is solver used mesh partitions

« Approaches taken to date

— Leave solver unaltered and communicate with files - easy
implementation, not optimal efficiency

— Tight integration into solver - improved efficiency, more
learning and development needed to optimize

©SciDAC

2% scientific Discovery through Advanced Computing 156

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

Case Study 2: Mesh Generation for
Nuclear Reactor Simulations

W,
B 0z
“ ’-Kw ﬁ,ff Laboratories

BROOKHAVEN [l () RinGE NATIONAL LABORATORY % Pacific Northwest National Laboratory

STATERMSERSTY OF NEW YOR®

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Goals and people involved

* Technical goals — Utilize and integrate the
ITAPS Geometry, Meshing, and various mesh
services for Nuclear Reactor Simulations

* People involved — Tim Tautges and Valmor
de Almeida—ITAPS, Andrew Siegel, Glen
Hansen and Kevin Clarno---Nuclear Energy)

%" Scientific Discovery through Advanced Computing N

ITAPS tools used in nuclear energy

Solution : Petascale
Petascale AR <hEEs Adaptive el Mesh
Front tracking Optimization Transfer .
Integrated Loo eneration
Tools
Build on
v
Front Mesh Swanoin Interpolati Dynamic eom/Mesh
Component tracking Improve PP Kernels Services Services
Tools P I\ A H
Are unified
by - -I......
Common - - - : - :
Interfaces B :

- ED AC _ | 159

SHARP framework: ITAPS
Multi-Physics Reactor Simulation

« Reactor safety depends on thermal/hydrualics-structural mechanics-
neutronics feedback

* Interoperability crucial
— Interacting with multiple modules
— Need variety of tools to operate on mesh & field data
« Coupling requires meshes & results in the same place

« Centralized parallel mesh infrastructure needed, to support coupling
while allowing modules freedom

« Metadata needed to coordinate coupling (normalization/conservation)

~ Enabling technologies

Stand-Alone
Driver

Physics
Model A

Visualization

Coupled Multi-Physics Driver

Physics
Model A

Physics
Model B

Geometry

Physics
Model B

Physics
Model C

Mesh generation Mesh

Adaptor

Mesh
Adaptor

High-performance i/o

Ultra-scalable solvers

Uncertainty

Advanced Burner Test Reactor ITAPS
Mesh Generation

«— 1/6 ABTR core

7k volumes (core, ctrl,
reflect, shield)

* 43k-5m hex elements

~6 GB to generate using
CUBIT

217-pin fuel ass'y —

» Conformal hex mesh

* 1520 vols

» Multiple homogenization
options, e.g. pins resolved

— Varying fidelity geometry, mesh

— Need scalable geometry & mesh generation

— Parallel mesh 10, representation to support ANL UNIC neutron transport code
— Need for mixed quad/tri extrusion, unavailable in CUBIT

— Customized mesh generation would make this easy (simple swept model)

b SCIDAC

“Scientific Discovery through Advanced Computing 161

ABTR Mesh Generation ITAPS
Wire-Wrapped Fuel Pin Assembly

D C

— Currently using MATLAB for meshing
— Wire-pin junction smoothed using fillets
— Mesh “slides” over wires through sweep

162

Reactor Simulation ITAPS
Required Mesh Services

* Robust mesh generation for complex & large geometric
models

— Developing MeshKit, based on iGeom, iMesh, iRel
« Assembly of SHARP framework, by connecting physics
modules to iMesh “backbone’

« Coupling of solution results through iMesh
— Implemented using MOAB data searching functions
— Will provide data searching as iMesh service eventually

« Partitioning, visualization, other iMesh-based services

©SciDAC

2% scientific Discovery through Advanced Computing 163

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

Case Study 3: Geometry & Mesh
Services for Shape Optimization

BROOKHRVEN ol 04K RIDGE NATIONAL LABORATORY 2. Pacific Northwest National Laboratoty

Design optimization for accelerators

Petascale
Integrated
Tools

Build on

Component
Tools

Are unified
by

Common
Interfaces

§SciDAC

AMR Shape Solutl_on Solut| Petascale

: R Adaptive Mesh

Front tracki Optimizatio Transf .
Loo Generation

|

[ek

v

Front
trackin

Mesh LS Swappin)ﬂt
prov Adap,t /] pping
=S .;. - {; P :: ‘ ‘

Dynamic eom/Mesh
Service ervices

165

mmmwmmmmmmm

Goals and People Involved

* Technical goals:

— Develop shape optimization for accelerator cavity
tuning and de-tuning, and for reverse engineering as-
assembled cavity shape

— ITAPS provides the geometry control and meshing
components

* People involved:
— SLAC: Rich Lee, Cho Ng, Volkan Ancelik
— ITAPS: Tim Tautges and Pat Knupp
— TOPS: Volkan Ancelik and Omar Ghattas
* |ITAPS Services Used: Shape Smoothing | | Geom/Mesh

Optimization Services

©SciDAC s — | —

A nd

o Bl N TS bRy i dh s id T sminiaie 166

Shape Optimization for I[TAPS
Accelerator Cavity Design

» Optimizing a cavity design is still mostly a manual process

» Future accelerators employ complex cavity shapes that require optimization to improve
performance

RIA

$4953

« Geometry & meshing support: OXp
ry g supp .
Iteration O:
Omega3P,
& SEMEIIL Fixed mesh topology:

SOy
R Convergence

No re-meshing

Re-use factorization
Iteration 1..k:

Shape Optimization for ITAPS
Accelerator Cavity Design

Zcc zcb zcl zcr
T

« Generate new geometric model G(p’) G
given a parameter vector p’ g A Y ‘
— MKILCCell function Tm _I_Zz
— DDRIV — S _

— CGM (iGeom)

 Associate old mesh m(p,)
to new geometry G(p),
project to CAD

— DDRIV
— CGM (iGeom) New geom,
— MOAB (iMesh) old mesh
— LASSO (iRel)

Project to CAD,
inverted elements

« Smooth mesh

— Mesquite

pSciDAC

MSE e e o s ettt e, STOOTh Curves Smooth Surfaces Smooth Volume

Services Provided by DDRIV BT

« Parameterized geometric model construction

— You write function which constructs model using
IGeom

— DDRIV acts as driver and handles 10
« Coordination of mesh smoothing on geometric model
* Re-classification of “old” mesh on “new” model
« Target matrix-based smoothing of re-classified mesh

« Computation of design velocities & embedding on
mesh using iIMesh Tags

©SciDAC

‘2% scientific Discovery through Advanced Computing 169

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

PART 7: Conclusions

Scientific Discovery through Advanced Computing

THE
UNIVERSITY OF
BRITISH
COLUMBIA

A o NY
B ‘A @E:. & Rensselaer T

STATERMSERSTY OF NEW YOR®

BROOKHRVEN “ OAK RIDGE NATIONAL LABORATORY 7. Pacific Northwest National Laboratory

What you learned today

* A component-based approach to mesh
services and tools is both flexible and
effective

* The ITAPS interfaces provide an avenue
to leverage many existing technologies
and a path to incremental adoption

©SciDAC

‘2" Scientific Discovery through Advanced Computing 171

A W

None of this would be possible without ITAPS
a strong team of contributors

We thank all those who have contributed to the
ITAPS interface definition effort and software!

— ANL: Tim Tautges

— LLNL: Lori Diachin, Mark Miller, Kyle Chand, Martin
Isenburg

— PNNL: Harold Trease

— RPI: Mark Shephard, Ken Jansen, Eunyoung Seol,
Xiaojnan Luo, Ting Xie, Onkar Sahni

— SNL: Vitus Leung, Karen Devine

— SUNY SB: Xiaolin Li, Brian Fix, Ryan Kaufman
— UBC: Carl Ollivier-Gooch

— U Wisconsin: Jason Kraftcheck, Jane Hu

Pos ;;:'r*] L

& 4 & /

.\ £ 1 7 2
“:%* Scientific Discovery through Advanced Computing

Contact Information

 ITAPS Web Page:

* ITAPS Software Page:
http://www.itaps-scidac.org/software

 Email:
e Tutorial Presenters:

Karen Devine, SNL Lori Diachin, LLNL Mark Shephard, RPI Tim Tautges, ANL

kddevin@sandia.gov diachin2@lInl.gov shephard@scorec.rpi.edu tautges@mcs.anl.gov
/ SciDAC

% Scientific Discovery through Advanced Computing 173

T

INTRROPERAFLE TCOLS FOR ADVANOET PRTASOALE SINULATITNG

Auspices and disclaimer

This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344.

This document was prepared as an account of work sponsored by an agency
of the United States government. Neither the United States government
nor Lawrence Livermore National Security, LLC, nor any of their
employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

L % pScild ./'\LC

%% scientific Discovery through Advanced Computing 174

INTREACPERAILE TOOLE PR ARVAHOOE PETASOALE SIMULATIONG

AFTERNOON SESSION HANDS ON

Scientific Discovery through Advanced Computing

THE
UNIVERSITY OF
BRITISH
COLUMBIA

YA Sandia SE STONY
B ‘A @ @Rensselaer Bresk

STATERMSERSTY OF NEW YOR®

BROOKHRVEN H OAK RIDGE NATIONAL LABORATORY 7. Pacific Northwest National Laboratory

