
Advanced

Interoperable
Tools for

Petascale
Simulations

Jason Kraftcheck (UW−Madison)
Carl Ollivier−Gooch (UBC)

E. Seegyoung Seol (RPI)
Lori Freitag Diachin (LLNL)

Tim Tautges (SNL)
Mark S. Shephard (RPI)

The TSTT Working Group:

DRAFT

Version 0.7

ITAPS

The ITAPS iGeom Interface

1

Contents

1 Introduction 3

2 Geometry Functions to Support Typical Applications 3
2.1 Mesh Optimization Processes . 3
2.2 An Adaptive Mesh Control loop . 3

3 Structure of ITAPS Geometry Interface Functions 4

4 ITAPS Geometry Interface Functions 5
4.1 Model Load/Save Function . 6
4.2 Primary Entity Topological Functions . 6

4.2.1 Return the dimension of the topological entity: 6
4.2.2 Return the entities of a given dimension that are adjacent to the given

entity . 7
4.2.3 Return second order adjacencies . 7
4.2.4 Determine if an entity is adjacent to another 8
4.2.5 Get number of entities of each dimension in the geometric model . . . 8
4.2.6 Geometric model entity iterators . 8

4.3 Pointwise Geometric Interrogations . 10
4.3.1 Closest point in real space . 10
4.3.2 Normal vector at a point on a face given the point’s global coordinates 10
4.3.3 Tangent vector at a point on an edge given the point’s global coordinates 10
4.3.4 Edge/Face Curvatures . 11
4.3.5 Closest point and normal or tangent vector 12
4.3.6 Closest point, normal/tangent vector and curvatures 12
4.3.7 Bounding Box . 13
4.3.8 Coordinates of a vertex . 14
4.3.9 Intersecting a ray with the model . 14
4.3.10 Point Classification . 15

4.4 Model Entity Tags . 15
4.5 Basic Geometric Sense Information . 15

4.5.1 Sense of a face normal with respect to a region 16
4.5.2 Sense of the edge tangent . 16

4.6 Support of Parametric Coordinate Systems 17
4.6.1 Determine what entities are parametrized 18

4.7 Parametric to real . 18
4.7.1 Real to parametric . 19
4.7.2 Parametric range . 20
4.7.3 Reparametrization . 21
4.7.4 Normal vector given parametric coordinates 22
4.7.5 Tangent vector at a point on an edge given the points global coordinates 22
4.7.6 Derivatives and Curvatures for a Face 23
4.7.7 Periodic and degenerate entities . 24

4.8 Support of Geometric Model Tolerance Information 25
4.9 Support of More Models . 26
4.10 Model Topology Modification Functions . 26
4.11 Entity Geometric Shape Information . 26

References

APPENDIX I: The Geometric Model

2

1 Introduction

A key component of the problem definition for mathematical physics problems governed by
PDE’s is a definition of the physical domain, to be referred to herein as the geometric model.
The overall role of the geometric model as an information structure component within mesh-
based simulation processes is discussed in reference [22]. It is important that the ITAPS
interoperability tools are able to work with general high level definitions of the domain that
can effectively support operations such as automatic mesh generation, tracking changes to
the domain determined via the simulation, adapting the mesh as the simulation proceeds to
properly control the discretization errors, relating information between alternative spatial
discretizations (meshes) for multiphysics analyses, etc.

The ITAPS geometry interface must account for the fact that the software modules that
provide geometry information are typically independent of the simulation modules that em-
ploy the supplied geometry information to make, and/or solve a PDE over, a mesh. Thus,
the goal of the ITAPS geometry interface is to provide a generic functional interface to
support the communication of geometry information to mesh-based applications.

To gain an appreciation for the ITAPS geometry interface functions needed to support
mesh-based simulations. Section 2 overviews the functions needed by some of the applica-
tions currently under consideration. The approach being taken to the development of the
ITAPS geometry interface is given in Section 3 which indicates that the functions will be
placed into groups that effectively account for the different sets of functionalities needed.
Section 4 then provides the groups of ITAPS geometry interface functions. Appendix I
provides a brief introduction to the commonly available sources of geometry information.

2 Geometry Functions to Support Typical Applications

This section briefly overviews typical geometry interface functions needed for tasks being
supported by the ITAPS interoperable libraries.

2.1 Mesh Optimization Processes

Given a mesh and information on the classification of the mesh against the geometric model
entities [2, 22], the MESQUITE mesh quality improvement toolkit [7, 15] repositions mesh
vertices and performs local mesh modification operations. When the mesh entities involved
with one of these operations are classified on the boundary of the model MESQUITE needs
to be sure the operations performed maintain the proper geometric representation of the
domain by the mesh. The geometry interface operations used to support these processes
are pointwise surface normal and pointwise closest point.

2.2 An Adaptive Mesh Control loop

One example is the ITAPS adaptive control loop supporting h-refinement adaptive analysis
for SLAC. The model domains are defined as ACIS solid models and the analysis engine
is SLAC’s OMEGA-3P. The ITAPS and other simulation automation tools used in the
construction of the adaptive loop include:

• MeshSim automatic mesh [24]

• FMDB mesh database [1, 20]

• MeshAdapt routines [13]

3

• Trellis Field Library [4]

Both MeshSim and FMDB invoke the ACIS API to support interactions with the geo-
metric model. In both cases these procedures interact through an API to load a “unified”
non-manifold model topology (the details of the unified topology are likely different in the
two). Both have shell and loop structures (FMDB for sure, Simmetrix I would think they
would but do not know for sure) as needed to ensure all operations. In the cases where
the interactions with the geometric model are based on geometric model entities the mesh
entities are classified upon, there should be no need to expose the shells and loops. How-
ever, I know in FMDB the loops and shells are used in determination of specific adjacencies.1

MeshAdapt interacts with the geometric model based on things driven at the mesh en-
tity level. Therefore, the classification of the mesh against the geometric model is critical.
MeshAdapt is focused on mesh modification operations. It interacts with the geometric
model to place new mesh vertices classified on model boundaries on the model boundaries.
The key operation used for this process is to request the xyz location of a point on a model
face or edge given its parametric value. Reparameterization of a vertex with respect to the
model edges using that vertex is needed so starting and end parameter values are obtained.
Parameter ranges and determination of periodicity for faces and edges is needed. The sense
of the normal to a face with respect to regions is needed.

The field library in Trellis is used to support local solution transfer after mesh modifi-
cations. At this time it interacts only with the mesh. There are potential situations where
more advanced transfer functions will need to interact with the geometric model.

3 Structure of ITAPS Geometry Interface Functions

As indicated in Appendix I, there are multiple forms of geometric model representations
with those based on boundary representations being the most common and the form being
supported by the ITAPS geometry interface. An examination of the geometry needs of
mesh-based simulation applications indicates a large fraction of their needs can be satisfied
through interface functions keyed by the primary topological entities of regions, faces, edges
and vertices. A few situations, particularly those dealing with evolving geometry, will have
needs for the additional topological constructs of loops and shells. It is therefore, useful to
have the geometry interface functions placed in groups at different levels of interface. It is
also useful to group the interface functions based on if they deal with topological entities
and their adjacencies only, provide information associated the geometric shape associated
with the topological entities, provide control information, etc.

It is expected that three types of geometric model API’s will be supported including:

• Commercial modeler API’s (e.g., Parasolid, ACIS, Granite).

• Geometric modelers that operate off of a utility that reads and operates on models that
have been written to standard files like IGES and STEP (e.g., Overture’s geometry
interface, and ACIS model read into Parasolid via a STEP file).

• Geometric models constructed for an input mesh.

1In the case when model topologies for mesh models need to be updated based on simulation results,

the loop and shell structures may need to be more directly interact with. In the case of the metal forming

adaptive loop, we have to update both the loop and shell structures based on evolution of the contact.

The fact that those topological entities are used within FMDB need not be explicitly exposed to other

applications.

4

The first two API types have no difficulty up-loading the model topology and linking to
the shape information since in the first case the modeler already has it and in the second
case the model structure is defined within the standard file. In the last case the input is a
mesh and algorithms must be applied to define the geometric model topological entities in
terms of the sets of appropriate mesh entities. Such algorithms are not unique and depend
on both the level of information available with the mesh and knowledge of the analysis
process. The ITAPS mesh functions can be used to load a mesh from which the set of mesh
entities classified on each geometric model topological entities can be constructed using al-
gorithms like that in reference [10, 19, 28]. The shape of the geometric model topological
model entities can be defined directly by the mesh geometry of the entities classified on it,
or that information can be enhanced [5, 28].

It should be possible to employ the most effective means possible to determine any
geometric parameters that have to be calculated. The primary complexity that arises in
meeting this is that not all geometric model forms support the same methods and using
the least common denominator can introduce huge computation penalty over alternatives
that are supported in most cases. The primary example of this is the use of parametric
coordinates for model faces and edges. The vast majority of the CAD systems employ
parametric coordinates and algorithms such as snapping a vertex to a model face using
parametric values can be make two orders of magnitude faster that using the alternative
of closest point to a point in space. Therefore, it is critical that the geometry interface
functions support the use of parametric values while having the ability to deal with those
cases when they are not available. This can be done by having different sets of functions
for when one does and does not have parametrization.

4 ITAPS Geometry Interface Functions

The ITAPS geometric interface functions are grouped by the level of geometric model in-
formation needed to support them and the type of information they provide. The set of
groups defined as the base level includes:

• Model loading which must load the model and initiate any supporting processes. (e.g.,
CAD kernel like ACIS or Parasolid).

• Topological queries based on the primary topological entities and their adjacencies.

• Pointwise interrogations which request geometric shape information with respect to a
point in a single global coordinate system.

• Entity level tags for associating information with entities.

Other groups of functions increase the functionality and/or the efficiency of the interface.
Some of these are quite commonly used while others are not. They include:

• Basic geometric sense information that indicates how face normals and edge tangents
are oriented.

• Support of parametric coordinates systems for edges and faces.

• Support of geometric model tolerance information

• Support of more complete topological models

• Model topology modification functions

• Entity geometric shape information

5

4.1 Model Load/Save Function

Functions to load and save a geometric model (name). The actual operations required are
a strong function of the type of modeling source. If the modeling source is a CAD modeler
with an appropriate API, the load or save operation will initiate the modeler API requesting
it to load or save the model in native form. It may further interact with the CAD modeler to
construct the appropriate “mappings” between topological entities in the modeler to support
the ITAPS functions. If the model is stored in an IGES or STEP file, the file name identifies
the geometric model. An appropriate reader is activated to load that model information
and link it to appropriate modeling tools capable of supporting the ITAPS functions. For
example, models stored in IGES files can be loaded and queried through functions using the
Rapsodi geometry preparation and grid generation module of Overture. In the cases where
the geometric model is constructed from the mesh the ITAPS mesh interface can be used
to load the mesh which is then operated on to define the geometric model which the ITAPS
geometry interface functions interact with.

The load and save functions are:

void load(in string name, in array<string> information,

in int information_size) throws iBase.Error;

void save(in string name, in array<string> information,

in int information_size) throws iBase.Error;

4.2 Primary Entity Topological Functions

In all cases it is assumed that the primary geometric model topological entities of region,
face, edge and vertex have been created and the adjacencies between them can be provided.
The functions given assume that during the execution of the process each model topological
entity has a unique “handle”. Whenever information relating to that entity is requested of
the ITAPS geometry interface, it will be keyed by the entity handle.

Given a topological entity handle, the following are the functions that are supported:

4.2.1 Return the dimension of the topological entity:

There is one operator for single entity requests and one for a list of them.

For a single topological entity:

int getTopoDim(in opaque entity_handle) throws iBase.Error;

The dimensions are: 0 for a vertex, 1 for an edge, 2 for a face and 3 for a region.

For a list of entities:

void getArrTopoDim(in array<opaque> entity_handles,

in int entity_handles_size,

inout array<int> dim, out int dim_size

) throws iBase.Error;

6

4.2.2 Return the entities of a given dimension that are adjacent to the given
entity

Note that this function is strictly for “first order” adjacencies where “first order” means
only entities that bound or are bounded by the given entity. See §4.2.3 for consideration of
“second-order” adjacencies. For a single entity:

void getEntAdj(in opaque entity_handle,

in iBase.EntityType requested_entity_type,

inout array<opaque> adj_entity_handles,

out int adj_entity_handles_size) throws iBase.Error;

The returned array contains the entity handles of the adjacent entities. The number of ad-
jacent entities is returned in adj entity handles size. In the case when the order of the
given entity is greater than the order of the adjacent entities requested, the returned entities
are those of the requested order that bound the given entity. In the case when the order
of the given entity is less than the order of the adjacent entities requested, the returned
entities are those of the requested order that the given entity is bounding. A request for the
entities of the same order produces an error.

For a list of entities:

void getArrAdj(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.EntityType requested_entity_type,

inout array<opaque> adj_entity_handles,

out int adj_entity_handles_size,

inout array<int> offset, out int offset_size

) throws iBase.Error;

See the ITAPS mesh interface [26] for an explanation of how information in for the entity
set functions operate.

4.2.3 Return second order adjacencies

There are times when applications would want to know not just what bounds an entity
or the what an entity bounds, but the next level of neighbors. Although such information
can always be determined from the appropriate first order adjacencies, their application is
common enough that supporting a second order adjacency function is useful.

For a single entity:

void getEnt2ndAdj(in opaque entity_handle,

in iBase.EntityType order_adjacent_key,

in iBase.EntityType requested_entity_type,

inout array<opaque> adj_entity_handles,

out int adj_entity_handles_size) throws iBase.Error;

The function of a second order adjacency request is to determine the set of topological
entities of a given order (requested entity type) adjacent to entities that that share com-
mon boundary entities of the specified order (order adjacent key). An example would be to
determine the set of model regions (requested entity type=REGION) that share a bound-
ing edge (order adjacent key=EDGE) with the given region (entity handle). The integer
adj entity handles size indicates the number of adjacent entities returned.

For a list of entities:

7

void getArr2ndAdj(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.EntityType order_adjacent_key,

in iBase.EntityType requested_entity_type,

inout array<opaque> adj_entity_handles,

out int adj_entity_handles_size,

inout array<int> offset, out int offset_size

) throws iBase.Error;

The offset array (offset) gives the starting index in the adj entity handles array for the
entities adjacent to i

th entity in entity handles.

4.2.4 Determine if an entity is adjacent to another

For a single entity:

int isEntAdj(in opaque entity_handle_1, in opaque entity_handle_2

) throws iBase.Error;

Returns 1 if entity handle 2 is adjacent to entity handle 1. Returns 0 if it is not. In
the case when the dimension of entity handle 1 is higher than that of entity handle 2

, it indicates entity handle 2 is on the closure of entity handle 1. In the case when
the dimension of entity handle 1 is lower than that of entity handle 2, it indicates
entity handle 1 is on the closure of entity handle 2. Note that an error will be thrown
if the dimension of both entities is the same.

For a list of entities:

void isArrAdj (in array<opaque> entity_handles_1,

in int entity_handles_1_size,

in array<opaque> entity_handles_2,

in int entity_handles_2_size,

inout array <int> is_adjacent_info,

out int is_adjacent_info_size

) throws iBase.Error;

4.2.5 Get number of entities of each dimension in the geometric model

These functions are used to determine the numbers of basic entities in the model:

int getNumOfType(in opaque entity_set_handle,

in iBase.EntityType entity_type) throws iBase.Error;

Returns the number of geometric model vertices, edges, faces and regions for values of
entity type of VERTEX, EDGE, FACE, REGION respectively with the given geometric
model or model set.

4.2.6 Geometric model entity iterators

These functions support iteration of the geometric model entities.

4.2.6.1 Initiate an iterator

This function initiates an iterator for the model entities of a given dimension. For single
entities:

8

void initEntIter(in opaque entity_dim,

out opaque entity_iterator) throws iBase.Error;

where entity dim indicates the dimension of the entity type (0-vertex, 1-edge, 2-face, 3-
region) and entity iterator is the iterator pointing at the first geometric entity of that
dimension.

For a list of entities:

bool initEntArrIter(in opaque entity_set_handle,

in iBase.EntityType requested_entity_type,

in int requested_array_size,

out opaque entArr_iterator

) throws iBase.Error;

4.2.6.2 Get the next entity

For single entities:

bool getNextEntIter(in opaque entity_iterator,

out opaque entity_handle) throws iBase.Error;

where entity iterator is the iterator for the entity type of interest which is updated to the
next entity on return, entity handle is the handle for the current entity and bool=true

indicates there are more of these entities, while bool=false indicates this is the last one.

For a list of entities:

bool getNextEntArrIter(in opaque entArr_iterator,

inout array<opaque> entity_handles,

out int entity_handles_size) throws iBase.Error;

4.2.6.3 Reset an iterator

Resets the iterator back to the first one. For single entities:

void resetEntIter(in opaque entity_iterator) throws iBase.Error;

where entity iterator is reset to point to the first entity.

For a list of entities:

void resetEntArrIter(in opaque entArr_iterator) throws iBase.Error;

4.2.6.4 Delete an iterator

For single entities:

void endEntIter(in opaque entity_iterator) throws iBase.Error;

where entity iterator is the iterator to be deleted (memory is released).

For a list of entities:

void endEntArrIter(in opaque entArr_iterator) throws iBase.Error;

9

4.3 Pointwise Geometric Interrogations

4.3.1 Closest point in real space

For a single point:

void getEntClosestPt(in opaque entity_handle,

in double near_x, in double near_y, in double near_z,

out double on_x, out double on_y, out double on_z

) throws iBase.Error;

Given the coordinates of a point “near” the model entity (near x, near y, near z), this
routine returns the coordinates of the closest point on the model entity (on x, on y, on z).
For a list of points:

void getArrClosestPt(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> near_coords,

in int near_coords_size,

inout array<double> on_coords,

out int on_coords_size

) throws iBase.Error;

The storage order of arrays near coords and on coords is specified in storage order. If
the storage order is UNDETERMINED upon entry, an error is returned.

4.3.2 Normal vector at a point on a face given the point’s global coordinates

For a single point:

void getEntNrmlXYZ(in opaque entity_handle,

in double x, in double y, in double z,

out double nrml_i, out double nrml_j, out double nrml_k

) throws iBase.Error;

where x, y, z are coordinates of the point and nrml i, nrml j, nrml k are the three com-
ponents of a unit normal at that point. The unit normal to a face must always be returned
such that it is pointing out the same side of the face.
For a list of points:

void getArrNrmlXYZ(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> coords, in int coords_size,

inout array<double> normal, out int normal_size

) throws iBase.Error;

The storage order of arrays coords and normal is specified in storage order. An error is
returned if storage order is UNDETERMINED upon entry.

4.3.3 Tangent vector at a point on an edge given the point’s global coordinates

For a single point:

10

void getEntTgntXYZ(in opaque entity_handle,

in double x, in double y, in double z,

out double tgnt_i, out double tgnt_j, out double tgnt_k

) throws iBase.Error;

where x, y, z are coordinates of the point and tgnt i, tgnt j, tgnt k are the three compo-
nents of a unit tangent at that point. The unit tangent must always be returned such that
it moves in the same direction (sense) along the edge.

For a list of points:

void getArrTgntXYZ(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> coords, in int coords_size,

inout array<double> tangent, out int tangent_size

) throws iBase.Error;

The storage order of arrays coords and tangent is specified in storage order. An error is
returned if storage order is UNDETERMINED upon entry.

4.3.4 Edge/Face Curvatures

For a single point on a face:

void getFcCvtrXYZ(in opaque face_handle,

in double x, in double y, in double z,

out double cvtr1_i, out double cvtr1_j, out double cvtr1_k,

out double cvtr2_i, out double cvtr2_j, out double cvtr2_k

) throws iBase.Error;

where x, y, and z are the three coordinates of the point on the face face handle. cvtr1 i,
cvtr1 j, and cvtr1 k are the three components of the first principal radius of curvature at
the specified point. cvtr2 i, cvtr2 j, and cvtr2 k are the three components of the second
principal radius of curvature at the specified point.

For a single point on an edge:

void getEgCvtrXYZ(in opaque edge_handle,

in double x, in double y, in double z,

out double cvtr_i, out double cvtr_j, out double cvtr_k

) throws iBase.Error;

For a list of points on entities (edges or faces):

void getEntArrCvtrXYZ(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> coords, in int coords_size,

inout array<double> cvtr_1, out int cvtr_1_size,

inout array<double> cvtr_2, out int cvtr_2_size

) throws iBase.Error;

The storage order of the arrays coords, cvtr 1 and cvtr 2 is specified in storage order.
An error is returned if storage order is UNDETERMINED upon entry.

11

4.3.5 Closest point and normal or tangent vector

This function returns a description of a plane normal to the specified entity at the location
on that entity closest to the input position. The plane is returned as a position on the entity
and the normal of the plane. The input entity must be either a edge or a face.

This function is functionally the combination of getEntClosestPt and getEntTgntXYZ

for curves and the combination of getEntClosestPt and getEntNrmlXYZ for surfaces.

For a single point on an entity:

void getEntNrmlPlXYZ(in opaque entity_handle,

in double x, in double y, in double z,

out double pt_x, out double pt_y, out double pt_z,

out double nrml_i, out double nrml_j, out double nrml_k

) throws iBase.Error;

For a list of points on entities:

void getArrNrmlPlXYZ(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> coords, in int coords_size,

inout array<double> pt_coords, out int pt_coords_size,

inout array<double> normals, out int normals_size,

) throws iBase.Error;

4.3.6 Closest point, normal/tangent vector and curvatures

This set of functions perform all three point-wise interrogations of a edge or face in a sin-
gle call. Given an input position, the functions will return the closest point on the entity,
the normal or tangent at that point, and the principal curvature(s) at that point. These
functions are a combination of getEntClosestPt, getEntNrmlXYZ or getEntTgntXYZ, and
getEgCvtrXYZ or getFcCvrtXYZ.

For a single point on an entity:

void getEgEvalXYZ(in opaque edge_handle,

in double x, in double y, in double z,

out double on_x, out double on_y, out double on_z,

out double tgnt_i, out double tgnt_j, out double tgnt_k,

out double cvtr_i, out double cvtr_j, out double cvtr_k

) throws iBase.Error;

void getFcEvalXYZ(in opaque face_handle,

in double x, in double y, in double z,

out double on_x, out double on_y, out double on_z,

out double nrml_i, out double nrml_j, out double nrml_k,

out double cvtr1_i, out double cvtr1_j, out double cvtr1_k,

out double cvtr2_i, out double cvtr2_j, out double cvtr2_k

) throws iBase.Error;

For a list of points on entities:

void getArrEgEvalXYZ(in array<opaque> edge_handles,

in int edge_handles_size,

in iBase.StorageOrder storage_order,

12

in array<double> coords, in int coords_size,

inout array<double> on_coords, out int on_coords_size,

inout array<double> tangent, out int tangent_size,

inout array<double> cvtr, out int cvtr_size

) throws iBase.Error;

void getArrFcEvalXYZ(in array<opaque> face_handles,

in int face_handles_size,

in iBase.StorageOrder storage_order,

in array<double> coords, in int coords_size,

inout array<double> on_coords, out int on_coords_size,

inout array<double> normal, out int normal_size,

inout array<double> cvtr_1, out int cvtr_1_size,

inout array<double> cvtr_2, out int cvtr_2_size

) throws iBase.Error;

4.3.7 Bounding Box

Request a box in three space that the model lies within.

void getEntBoundBox(in opaque entity_handle,

out double min_x, out double min_y, out double min_z,

out double max_x, out double max_y, out double max_z

) throws iBase.Error;

Request a box in three space that the entity lies within. min x, min y, and min z are the
coordinates of the lower left corner of the bounding box, and max x, max y, and max z are
the coordinates of the upper right corner of the bounding box.

For a single entity:

void getBoundBox(out double min_x, out double min_y, out double min_z,

out double max_x, out double max_y, out double max_z

) throws iBase.Error;

where min x, min y, and min z are the coordinates of the lower left corner of the bound-
ing box, and max x, max y, and max z are the coordinates of the upper right corner of the
bounding box.

For a list of entities:

void getArrBoundBox(in array<opaque> entity_handles,

in int entity_handles_size,

inout iBase.StorageOrder storage_order,

inout array<double> min_corner_coords,

out int min_corner_coords_size,

inout array<double> max_corner_coords,

out int max_corner_coords_size

) throws iBase.Error;

The storage order of arrays min corner coords and max corner coords is specified in
storage order. If the order is UNDETERMINED upon entry, the variable storage order

contains the storage order provided by the implementation upon exit.

13

4.3.8 Coordinates of a vertex

For a single vertex:

void getVtxCoord(in opaque vertex_handle,

out double x, out double y, out double z

) throws iBase.Error;

Returns the coordinates of a vertex entity.

For a list of them:

void getVtxArrCoords(in array<opaque> vertex_handles,

in int vertex_handles_size,

inout iBase.StorageOrder storage_order,

inout array<double> coords, out int coords_size

) throws iBase.Error;

Returns the coordinates of an array of vertices in the specified storage order. If the order is
UNDETERMINED upon entry, the variable storage order contains the storage order provided
by the implementation upon exit.

4.3.9 Intersecting a ray with the model

A common inquiry used in many modeling operations is the intersection with the model
boundary of a line that starts at a given point and goes to infinity in a given direction.
Since there can be multiple intersections with multiple model entities, this function will re-
turn a list of model entities (can be faces, edges and/or vertices) and the coordinates of each
intersection. Note that most geometric modeling API’s will determine these intersections to
within the geometric modeling tolerance of that entity. For example, a line that intersects
the toleranced size cylinder around an edge will be flagged as intersecting that edge and
none of the faces that come into that edge.

For a single point:

void getPntIntsct(in double x, in double y, in double z,

in double dir_x, in double dir_y, in double dir_z,

inout array<opaque> intersect_entity_handles,

out int intersect_entity_handles_size,

inout iBase.StorageOrder storage_order,

inout array<double> intersect_coords,

out int intersect_coords_size,

inout array<int> param_coords,

out int param_coords_size

) throws iBase.Error;

where x, y, and z are the coordinates of a point, and dir x, dir y, and dir z are the direc-
tion of a line. The entities intersecting with the line are returned in intersect entity handles

with its number intersect entity handles size. For each intersecting model entity, the
coordinates of each intersection and parametric coordinates (0, 1 or 2) are returned, respec-
tively, in intersect coords and param coords. The variable storage order specifies the
order of intersecting coordinates. If the order is UNDETERMINED upon entry, storage order

contains the storage order provided by the implementation upon exit.

For a list of them:

14

void getPntArrRayIntsct(in iBase.StorageOrder storage_order,

in array<double> coords, in int coords_size,

in array<double> directions,

in int directions_size,

inout array<opaque> intersect_entity_handles,

out int intersect_entity_handles_size,

inout array<int> offset, out int offset_size,

inout array<double> intersect_coords,

out int intersect_coords_size,

inout array<int> param_coords,

out int param_coords_size,

) throws iBase.Error;

An offset array (offset) gives the starting index in the intersect entity handles array
for the intersecting model entities of point i. The variable storage order specifies the
order of coordinates of points (coords), the directions of lines (directions) and intersecting
coordinates (intersect coords). An error is returned if the order is UNDETERMINED upon
entry.

4.3.10 Point Classification

A common inquiry used in many modeling operations is point classification. Given a point in
space this function returns information indicating which region it is inside, or which model
face, edge of vertex it is on. Again, modeling API’s will determine this information in a
manner consistent with the modeling system tolerances.

For a single point:

void getPntClsf(in double x, in double y, in double z,

out opaque entity_handle) throws iBase.Error;

where x, y, and z are the coordinates of a point, and entity handle is the entity where the
point is on or in.

For a list of them:

void getPntArrClsf(in iBase.StorageOrder storage_order,

in array<double> coords, in int coords_size,

inout array<opaque> entity_handles,

out int entity_handles_size

) throws iBase.Error;

The variable storage order specifies the order of coordinates of points (coords). An error
is returned if the order is UNDETERMINED upon entry.

4.4 Model Entity Tags

Model entity tags work the same as mesh entity tags. See the iBase tag interface [27].

4.5 Basic Geometric Sense Information

An examination of the geometric modeling literature describes a number of alternative forms
of entity sense information (indicates orientation of one entity to another) that is used to
support a variety of different operations. When working with the geometric information
defining an object, the most fundamental of this information has to do with the which

15

side of a face the normal vectors point out of and which of the two possible directions of
traversing an edge the tangent vector to the edge points. Knowledge of this information
and entity adjacencies is sufficient to easily support the construction of other entity sense
information structures.

4.5.1 Sense of a face normal with respect to a region

The sense of a face normal indicates which of the two sides of a face the normal is pointing
out of. In the case when the face is not bounded by any regions, the options for determining
this information has to either use a convention associated with the cross product of para-
metric coordinates or examining the normal vector returned at one or more points on the
surface. In general, great care needs to be exercised in using such real valued information,
particularity over anything other than infinitesimal neighborhoods on the face. If such infor-
mation is needed when parametric coordinates are not used, the pointwise normal operators
can be used as part of the process to construct it. As it turns out, such information is not
commonly required in the cases where there are no regions bounding the face.

In the case where the face is bounded by one or more regions, the region is attached to
one side, or possibly both sides, of the face. Therefore, in these cases, a simple function can
be used to return the required information. That function for one entity is:

int getEntNrmlSense(in opaque face_handle,

in opaque region_handle) throws iBase.Error;

where face handle is the face of interest and region handle is the region it bounds for
which we want to know if the normals are consistent or not. A value of 1 is returned if the
face normal is pointing out of the region, -1 is returned if the normal is pointing into the
region and a 0 is returned when the same region is using both sides of the face.

For a list of entities:

void getArrNrmlSense(in array<opaque> face_handles,

in int face_handles_size,

in array<opaque> region_handles,

in int region_handles_size,

inout array<int> sense, out int sense_size

) throws iBase.Error;

4.5.2 Sense of the edge tangent

Since an edge is an one-dimensional entity, the tangent to the edge naturally defines a con-
sistent direction for the traversal of the edge. There are two conventions of possible interest
with respect to the sense of the edge tangent. The first is with respect to the direction of
the internal representation of the edge curve as defined in the parametric coordinates of
each face using the edge and the second is with respect to the vertex ordering.

The sense of the edge curve as defined in the parametric coordinates a face using the
edge for a single edge:

int getEgFcSense(in opaque edge_handle,

in opaque face_handle) throws iBase.Error;

where edge handle is the edge of interest and face handle is the face it bounds for which
we want to know if the normals are consistent or not. A value of 1 is returned if the tangents
are in the same direction, -1 is returned if the tangents are in the opposite direction and a

16

0 is returned when the face uses the edge more that once (twice is common, however, more
than twice is also possible).

For a list of edges:

void getEgFcArrSense(in array<opaque> edge_handles,

in int edge_handles_size,

in array<opaque> face_handles,

in int face_handles_size,

inout array<int> sense, out int sense_size

) throws iBase.Error;

For the vertex ordering:

int getEgVtxSense(in opaque edge_handle,

in opaque vertex_handle_1, in opaque vertex_handle_2

) throws iBase.Error;

where edge handle is the edge of interest, vertex handle 1 is one of the vertices bounding
the edge and vertex handle 2 is the other vertex bounding the edge. A value of 1 is re-
turned if the tangent is consistent with traversing the edge from the vertex vertex handle 1

to vertex vertex handle 2 . A value of 1 is returned it the tangent is consistent with travers-
ing the edge from the vertex vertex handle 2 to vertex vertex handle 1. A value of -1 is
returned when the edge is closed and thus the two vertices are the same.

For a list of them:

void getEgVtxArrSense(in array<opaque> edge_handles,

in int edge_handles_size,

in array<opaque> vertex_handles_1,

in int vertex_handles_1_size,

in array<opaque> vertex_handles_2,

in int vertex_handles_2_size,

inout array<int> sense, out int sense_size

) throws iBase.Error;

4.6 Support of Parametric Coordinate Systems

The majority of CAD systems employ local parametrized coordinates for the faces and edges,
where the faces are parametrized in terms of two coordinates and the edges in terms of one.
Most of the modelers used trimmed faces meaning that portions of the face coordinate range
do not define valid points since that portion of the face has been removed by some modeling
operation. It is important to know when model edges and faces are parametrized since it
is possible to use geometric interrogations that are at least an order of magnitude faster to
execute some of the common operations needed.

A set of functions are provided for operating on models where all or some of the geo-
metric model faces and edges are defined in a parametric coordinate system. To make use
of these functions when generating or modifying a mesh one must maintain information on
the parametric coordinates associated with the mesh entities. This must be done such that
extraneous information need not be stored. For example, on effective means to deal with
this is to store only parametric coordinates of mesh vertices classified on model faces and
edges for the geometric model entity it is classified on. (The reparametrization operations
below can deal with the fact that mesh vertices classified on geometric model vertices and
edges can need the parametric values on the edges and/or faces they bound.)

17

4.6.1 Determine what entities are parametrized

Indicate which model entities are or are not defined with parametric coordinates.

int getParametric () throws iBase.Error;

The definition of the returned integer has the following meaning:

• 0 - no parametrized entities

• 1 - all entities parametrized and faces can be trimmed

• 2 - all entities parametrized and no faces are trimmed

• 3 - some entities parametrized and faces can be trimmed

• 4 - some entities parametrized and no faces are trimmed

In the cases where only some of the model entities are parametrized a function is needed to
indicate if individual geometric model entities have parametric coordinates.

int isEntParametric(in opaque entity_handle) throws iBase.Error;

returns a 1 if the entity has a parametric coordinate system and 0 if it does not.

For a list of model entities:

void isArrParametric(in array<opaque> entity_handles,

in int entity_handles_size,

inout array<int> is_parametric,

out int is_parametric_size

) throws iBase.Error;

4.7 Parametric to real

Given the parametric coordinates of a point on a model face or edge, return the x,y,z
coordinates of the point.

void getEntUVtoXYZ(in opaque entity_handle, in double u, in double v,

out double x, out double y, out double z

) throws iBase.Error;

where u and v are the parametric coordinates of the point on a geometric model face,
entity handle, and x, y and z are the global x,y,z coordinates of the point.

void getEntUtoXYZ(in opaque entity_handle, in double u,

out double x, out double y, out double z

) throws iBase.Error;

where u is the parametric coordinate of the point on a geometric model edge, entity handle,
and x, y and z are the global x,y,z coordinates of the point.

In the case of a list of model faces or edges the functions are:

void getArrUVtoXYZ(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> uv, in int uv_size,

inout array<double> on_coords, out int on_coords_size

) throws iBase.Error;

18

The storage order of arrays uv and on coords is specified in storage order. An error is
returned if storage order is UNDETERMINED upon entry.

void getArrUtoXYZ(in array<opaque> entity_handles,

in int entity_handles_size,

in array<double> u, in int u_size,

inout iBase.StorageOrder storage_order,

inout array<double> on_coords, out int on_coords_size

) throws iBase.Error;

The storage order of output array on coords is specified in storage order. If the order is
UNDETERMINED upon entry, the variable storage order contains the storage order provided
by the implementation upon exit.

4.7.1 Real to parametric

Given the real coordinates of a point near a geometric model face or edge return the para-
metric coordinate of the closest point on the model entity.

void getEntXYZtoUV(in opaque entity_handle,

in double x, in double y, in double z,

out double u, out double v) throws iBase.Error;

where x, y, and z are the global x,y,z coordinates of a point near a geometric model face,
entity handle, and u and v are the parametric coordinates of the closest point on a geo-
metric model face.

getEntXYZtoUVHint returns u, v values with hint.

void getEntXYZtoUVHint(in opaque entity_handle,

in double x, in double y, in double z,

out double u, out double v) throws iBase.Error;

void getEntXYZtoU(in opaque entity_handle,

in double x, in double y, in double z,

out double u) throws iBase.Error;

where x, y, and z are the global x,y,z coordinates of a point near a geometric model edge,
entity handle, and u is the parametric coordinates of the closest point on a geometric
model edge.

In the case of a list of model faces or edges the functions are:

void getArrXYZtoUV(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> coords, in int coords_size,

inout array<double> uv, out int uv_size

) throws iBase.Error;

The storage order of array coords and uv is specified in storage order. An error is returned
if storage order is UNDETERMINED upon entry.

19

void getArrXYZtoUVHint(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> coords, in int coords_size,

inout array<double> uv, out int uv_size

) throws iBase.Error;

The storage order of array coords and uv is specified in storage order. An error is returned
if storage order is UNDETERMINED upon entry.

void getArrXYZtoU(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> coords, in int near_coords_size,

inout array<double> u, out int u_size

) throws iBase.Error;

The storage order of array coords is specified in storage order. An error is returned if
storage order is UNDETERMINED upon entry.

4.7.2 Parametric range

Request the parametric range of for a geometric model face or edge.

void getEntUVRange(in opaque entity_handle,

out double u_min, out double v_min,

out double u_max, out double v_max

) throws iBase.Error;

where u min and v min are the minimum u, v values and u max and v max are the maximum
u, v values on the model face entity handle.

void getEntURange(in opaque entity_handle,

out double u_min, out double u_max) throws iBase.Error;

where u min is the minimum u value and u max are the maximum u value on the model edge
entity handle.

In the case of a list of model faces or edges the functions are:

void getArrUVRange(in array<opaque> entity_handles,

in int entity_handles_size,

inout iBase.StorageOrder storage_order,

inout array<double> uv_min, out int uv_min_size,

inout array<double> uv_max, out int uv_max_size

) throws iBase.Error;

where uv min and uv max contains respectively minimum u,v values and maximum u, v,
values in a specific storage order given in storage order. If the order is UNDETERMINED

upon entry, the variable storage order contains the storage order provided by the imple-
mentation upon exit.

void getArrURange(in array<opaque> entity_handles,

in int entity_handles_size,

inout array<double> u_min, out int u_min_size,

inout array<double> u_max, out int u_max_size

) throws iBase.Error;

20

4.7.3 Reparametrization

These functions return the parametric coordinates of points classified on geometric model
entities that are part of the closure of higher order geometric model entities for which the
parametric coordinates are desired. These functions allow the effective use of parametric
values in various operations while only requiring the storage of the parametric value of a
point of interest with respect to the model entity it is classified on (as apposed to that
parametric value and the parametric values of all the model entities of which it is on the
closure). As an example consider a mesh generation process where nodes are generated first
on model edges, then on model faces and finally in model regions. Further assume that
the mesh generator makes use of the parametric values of the entity being meshed (most
surface mesh generators do this). The nodes on the model edges know their parametric
values with respect to the edge. However, to mesh any of the faces this edge bounds, the
parametric coordinates of that node with respect to that face is needed. In the general case
of trimmed faces and edges, the parametric coordinates of nodes classified on model vertices
with respect to the model faces and edges it is on the closure of is also needed

void getEntUtoUV(in opaque edge_handle, in opaque face_handle,

in double in_u, out double u, out double v

) throws iBase.Error;

where edge handle is the edge the point is classified on, face handle is the face the para-
metric values of the point that are needed, in u is the parametric value of the point on the
edge, and u and v are the parametric coordinates on the face.

void getVtxToUV (in opaque vertex_handle, in opaque face_handle,

out double v, out double v) throws iBase.Error;

where vertex handle is the vertex the point is classified on, face handle is the face the
parametric values of the point that are needed, and u and v are the parametric coordinates
on the face.

void getVtxToU(in opaque vertex_handle, in opaque edge_handle,

out double u) throws iBase.Error;

where vertex handle is the vertex the point is classified on, edge handle is the edge the
parametric values of the point that are needed, and u is the parametric coordinate on the
edge.

In the case where there are an list of entities or vertices these functions are:

void getArrUtoUV(in array<opaque> edge_handles,

in int edge_handles_size,

in array<opaque> face_handles,

in int face_handles_size,

in array<double> u_in, in int u_in_size,

inout iBase.StorageOrder storage_order,

inout array<double> uv, out int uv_size

) throws iBase.Error;

u, v values are returned in the order specified in storage order. If the order is UNDETERMINED
upon entry, the variable storage order contains the storage order provided by the implemen-
tation upon exit.

21

void getVtxArrToUV(in array<opaque> vertex_handles,

in int vertex_handles_size,

in array<opaque> face_handles,

in int face_handles_size,

inout iBase.StorageOrder storage_order,

inout array<double> uv, out int uv_size

) throws iBase.Error;

u, v values are returned in array uv in the order specified in storage order. If the order is
UNDETERMINED upon entry, the variable storage order contains the storage order provided
by the implementation upon exit.

void getVtxArrToU(in array<opaque> vertex_handles,

in int vertex_handles_size,

in array<opaque> edge_handles,

in int edge_handles_size,

inout array<double> u, out int u_size

) throws iBase.Error;

4.7.4 Normal vector given parametric coordinates

For the case where point’s parametric coordinates on a face are used:

void getEntNrmlUV(in opaque entity_handle, in double u, in double v,

out double nrml_i, out double nrml_j, out double nrml_k

) throws iBase.Error;

where u and v are the u and v coordinates of the point on the face entity handle, and
nrml i, nrml j and nrml k are the three components of a unit normal at that point (in the
global coordinate directions). The unit normal to a face must always be returned such that
it is pointing out the same side of the face.

For a list of points:

void getArrNrmlUV(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> uv, in int uv_size,

inout array<double> normal, out int normal_size

) throws iBase.Error;

The storage order of the arrays uv and normal is specified in storage order. An error is
returned if storage order is UNDETERMINED upon entry.

4.7.5 Tangent vector at a point on an edge given the points global coordinates

For the case of when the point’s parametric value is used:

void getEntTgntU(in opaque entity_handle, in double param_coord,

out double tngt_i, out double tngt_j, out double tngt_k

) throws iBase.Error;

where param coord has the parametric coordinate of the point and tngt i, tngt j and
tngt k are the three components of a unit tangent at that point (in the global coordinate
directions). The unit tangent to a face must always be returned such that it is always giving

22

a direction the moves one in the same sense along the edge.

For a list of points:

void getArrTgntU(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> coords, in int coords_size,

inout array<double> tangent, out int tangent_size

) throws iBase.Error;

The storage order of the arrays coords and tangent is specified in storage order. An
error is returned if storage order is UNDETERMINED upon entry.

4.7.6 Derivatives and Curvatures for a Face

The derivatives modelers return for faces are with respect to the parametric coordinate
system. The function for the first derivatives is:

The function for the first derivatives is:

void getEnt1stDrvt(in opaque entity_handle, in double u, in double v,

inout array<double> drvt_u, out int drvt_u_size,

inout array<double> drvt_v, out int drvt_v_size

) throws iBase.Error;

where u and v are the u and v coordinates of the point on the face entity handle, drvt u

is the vector defining the first derivative with respect to u, and drvt v is the vector defining
the first derivative with respect to v.

First derivatives for a list of points:

void getArr1stDrvt(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> uv, in int uv_size,

inout array<double> drvt_u, out int drvt_u_size,

inout array<int> u_offset, out int u_offset_size,

inout array<double> drvt_v, out int drvt_v_size,

inout array<int> v_offset, out int v_offset_size

) throws iBase.Error;

The offset arrays (u offset, v offset) give the starting index in the drvt u and drvt v

arrays for the derivatives of the i
th entity in entity handles. The storage order of array

uv is specified in storage order. An error is returned if storage order is UNDETERMINED

upon entry.

The function for the second derivatives at a point is:

void getEnt2ndDrvt (in opaque entity_handle, in double u, in double v,

inout array<double> drvt_uu, out int drvt_uu_size,

inout array<double> drvt_vv, out int drvt_vv_size,

inout array<double> drvt_uv, out int drvt_uv_size

) throws iBase.Error;

23

where u and v are the u and v coordinates of the point on the face entity handle, drvt uu

is the vector defining the second derivative with respect to u, drvt vv is the vector defin-
ing the second derivative with respect to v, and drvt uv is the vector defining the second
derivative with respect to u and v.

Second derivatives for a list of points:

void getArr2ndDrvt(in array<opaque> entity_handles,

in int entity_handles_size,

in iBase.StorageOrder storage_order,

in array<double> uv, in int uv_size,

inout array<double> drvt_uu, out int drvt_uu_size,

inout array<int> uu_offset, out int uu_offset_size,

inout array<double> drvt_vv, out int drvt_vv_size,

inout array<int> vv_offset, out int vv_offset_size,

inout array<double> drvt_uv, out int drvt_uv_size,

inout array<int> uv_offset, out int uv_offset_size

) throws iBase.Error;

The offset arrays (uu offset, vv offset, uv offset) give the starting index in the drvt uu,
drvt vv and drvt uv arrays for the derivatives of the i

th entity in entity handles. The
storage order of the arrays uv is specified in storage order. An error is returned if
storage order is UNDETERMINED upon entry.

The function to get the principal curvatures at a given uv location is:

void getFcCvtrUV(in opaque entity_handle, in double u, in double v,

out double cvtr1_i, out double cvtr1_j, out double cvtr1_k,

out double cvtr2_i, out double cvtr2_j, out double cvtr2_k

) throws iBase.Error;

where u and v are the u and v coordinates of the point on the face face handle. cvtr1 i,
cvtr1 j and cvtr1 k are first principal radius of curvature at the specified point. cvtr2 i,
cvtr2 j and cvtr2 k are the second principal radius of curvature at the specified point.

To get the principal curvatures at a set of points:

void getFcArrCvtrUV(in array<opaque> face_handles,

in int face_handles_size,

in iBase.StorageOrder storage_order,

in array<double> uv, in int uv_size,

inout array<double> cvtr_1, out int cvtr_1_size,

inout array<double> cvtr_2, out int cvtr_2_size

) throws iBase.Error;

The storage order of the arrays uv is specified in storage order. An error is returned if
storage order is UNDETERMINED upon entry.

4.7.7 Periodic and degenerate entities

It is possible for model edges or faces to be periodic in that they close onto themselves and
for specific portions of their boundary have two different parametric values correspond to
the same point is real space. The function to test if an entity is periodic is:

void isEntPeriodic(in opaque entity_handle, out int in_u, out int in_v

) throws iBase.Error;

24

where entity handle is an edge or face handle. A return of 0 for in u means it is not
periodic in u and ca return of 1 means it is periodic in u. A return of 0 for in v means it is
not periodic in v and a return of 1 means it is periodic in v (not used in the case of an edge).

For a list of entities:

void isArrPeriodic(in array<opaque> entity_handles,

in int entity_handles_size,

inout array<int> in_uv, out int in_uv_size

) throws iBase.Error;

It is also possible for model faces to have degeneracies in the sense that a range of points
in parametric space map to a single point in real space. Common examples are the poles of
a sphere of a three sides surface constructed by degenerating one of the sides of a four sided
face to a point. Since determining the specifics of the situations encountered are specific to
the geometry and parametrization used for the face, the function indicates only the number
of degeneracy locations for a given face. The function to test for degeneracies is:

int isFcDegenerate(in opaque face_handle) throws iBase.Error;

where face handle is a face handle. The number returned is the number of degenerate
locations with 0 meaning there are no degenerate locations.

In some modelers the face for a complete sphere would have one periodic direction and
two degeneracies, while a cone would have one periodic direction and one degeneracy.
For a list of faces:

void isFcArrDegenerate(in array<opaque> face_handles,

in int face_handles_size,

inout array<int> degenerate,

out int degenerate_size

) throws iBase.Error;

4.8 Support of Geometric Model Tolerance Information

Geometric modeling systems use finite tolerance information to define when the geometry
associated with topological entities is to be considered close enough to decide that they
share common boundaries. This information must be used in a consistent manner during
specific mesh generation and modification operations to ensure the resulting mesh provides
a valid triangulation of the domain [21, 23]. Some modelers associate a single value with all
model entities while others employ a hierarchy where each model entity can have its own
tolerance. The functions to obtain the tolerance information are:

void getTolerance(out int form, out double tolerance

) throws iBase.Error;

The integer form is returned to indicate the type of tolerance information 0 for no tolerance
information, 1 for a single tolerance value and 2 for entity level tolerances. In the case of
a single tolerance it is returned in the double tolerance. When each model entity has its
own tolerance, the following function will return the entity’s value.

double getEntTolerance(in opaque entity_handle) throws iBase.Error;

In the case of a list of entities:

25

void getArrTolerance(in array<opaque> entity_handles,

in int entity_handles_size,

inout array<double> tolerance,

out int tolerance_size

) throws iBase.Error;

4.9 Support of More Models

The ITAPS interface assumes that all models support the basic topological entities and their
adjacencies. In cases where a complete manifold (2-manifold), or complete non-manifold
representation is used there are additional topological entities available. In many cases
the geometry interface routines can take advantage of these entities to more quickly deter-
mine requested information and in other cases the information is needed to support some
operations that can be requested.

int getTopoLevel(in string model_name) throws iBase.Error;

The returned values are 0 for primary entities only (the default), 1 for manifold and 2 for
non-manifold

4.10 Model Topology Modification Functions

4.11 Entity Geometric Shape Information

References

[1] FMDB web page, http://www.scorec.rpi.edu/FMDB.

[2] Beall, M.W. and Shephard, M.S., “A General Topology-Based Mesh Data Structure”,
Int. J. Num. Meth. Engng., 40(9):1573-1596, 1997.

[3] Beall, M.W., Walsh, J. and Shephard, M.S., “Accessing CAD Geometry for Mesh
Generation”, 12th Int. Meshing Roundtable, Sandia National Laboratories, SAND-2003-
3030P, pp. 33-42, 2003

[4] Beall, M.W. and Shephard, M.S., “An Object-Oriented Framework for Reliable Nu-
merical Simulations”, Engineering with Computers, 15(1):61-72, 1999.

[5] Cirak, F., Ortiz, M. and Schroder, “Subdivision surfaces: a new paradigm for thin shell
finite-element analysis”, Int J. Num. Meth. Engng., 47:2039-2072, 2000.

[6] Dey, S., O’Bara, R.M. and Shephard, M.S., “Curvilinear mesh generation in 3D”,
Computer-Aided Design, 33:199-209, 2001

[7] Freitag, L., Leurent, T., Knupp, P. and Melander, D., “MESQUITE Design: Issues in
the Development of a Mesh Quality Improvement Toolkit,” p159-168, Proc. of the 8th

Intl. Conf. on Num. Grid Generation in Comp. Field Simulations, Hawaii 2002.

[8] Gursoz, E.L., Choi, Y. and Prinz, F.B., “Vertex-Based Representation of Non-Manifold
Boundaries”, Geometric Modeling Product Engineering, North Holland, pp. 107-130,
1990.

[9] Kramer, T.R., “Extracting STEP Geometry and Topology from a Solid Modeler:
Parasolid-to-STEP, NISTIR 4577,
http://www.mel.nist.gov/msidlibrary/summary/9116.html, 1991.

26

[10] Krysl, P. and Ortiz, M., “Extraction of boundary representation from surface triangu-
lations”, Int J. Num. Meth. Engng., 50:1737-1758, 2001.

[11] Lee, C.K., “Automatic metric 3-D surface mesh generation using subdivision surface
geometry model. Part 1: Construction of underlying geometric model”, Int J. Num.

Meth. Engng., 56:1593-1614, 2003.

[12] Li, X., Shephard, M.S. and Beall, M.W., “Accounting for curved domains in mesh
adaptation”, Int J. Num. Meth. Engng., 2002.

[13] Li, X., Shephard, M.S. and Beall, M.W., “3-D Anisotropic Mesh Adaptation by Mesh
Modifications”, submitted to Comp. Meth. Appl. Mech. Engng., 2003.

[14] Luo, X., Shephard, M.S., Remacle, J.-F., O’Bara, R.M., Beall, M.W., Szabó, B.A. and
Actis, R., “p-Version Mesh Generation Issues”, Proc. 11th Int. Meshing Roundtable,
Sandia National Laboratories, pp. 343-354, 2002

[15] Mesquite web page, http://sass3075.endo.sandia.gov/∼pknupp/Mesquite/Mesquite.html

[16] “OLE for Design and Modeling: Geometry and Topology Query Interfaces - Version
1.0”, http://www.dmac.org/tech/GandT/index.htm, 1997

[17] Owen, S.J. and White D.R., “Mesh-based geometry: A systematic approach to con-
structing geometry from a finite element mesh”, Proc. 10th Int. Meshing Roundtable,
Sandia report SAND 2001-2967C, pp. 83-96, 2001.

[18] Owen, S.J., White D.R. and Tautges, T.J., “Facet-based surfaces for 3-D mesh gener-
ation”, Proc. 11th Int. Meshing Roundtable, pp. 297-311, 2002.

[19] Pandofi, A. and Ortiz, M., “An efficient procedure for fragmentation simulations”,
Engng. With Computers, 18(2):148-159, 2002.

[20] Remacle, J.-F. and Shephard, M.S., “An algorithm oriented mesh database”, Int J.

Num. Meth. Engng., 58:349-374, 2003.

[21] Schroeder, W.J. and Shephard, M.S., “On rigorous conditions for automatically gen-
erated finite element meshes”, Turner, J.U., Pegna, J. and Wozny, M.J., eds., Product

Modeling for Computer-Aided Design and Manufacturing, North Holland, Amsterdam,
267-291, 1991.

[22] Shephard, M.S., Fischer, P., Chand, K.K. and Flaherty, J.E., “Simulation Information
Structures”, http://tstt-scidac.org, 2003.

[23] Shephard, M.S. and Georges, M.K., “Reliability of Automatic 3-D Mesh Generation”,
Comp. Meth. Appl. Mech. and Engng., 101:443-462, 1992.

[24] Simmetrix web page, http://www.simmetrix.com.

[25] Tautges, T.J., “The common geometry module (CGM): A generic, extensible geometry
interface”, Proc. 9th Int. Meshing Roundtable, Sandia report SAND 2000-2207, pp.
337-359, 2000.

[26] ITAPS Mesh Interface, http://www.tstt-scidac.org/software/software.html.

[27] ITAPS Base Interface, http://www.tstt-scidac.org/software/software.html.

[28] Wan, J., Kocak, S. and Shephard, M.S., “Automated adaptive 3-D forming simulation
process”, to appear Engineering with Computers, 2005.

[29] Weiler, K.J., “The radial-edge structure: A topological representation for non-manifold
geometric boundary representations”, M.J. Wozny, H.W. McLaughlin, J.L. Encarnacao,
editors. Geometric modeling for CAD applications, North Holland, pp. 3-36, 1988.

27

Appendix I: The Geometric Model

From the functional viewpoint of supporting a numerical simulation, the geometric model
must be able to:

• Support the ability to address any domain interrogation required during the numerical
analysis procedures. This includes the processes of creating and adapting meshes that
properly represent the domain of the simulation

• Support the association of the physical and mathematical attributes with the mesh dis-
cretization in a manner consistent with the simulation process. Track domain changes
in the cases where the domain evolves as part of the solution process

There are multiple sources for high-level domain definitions; the most common are CAD
models, image data and cell-based (mesh-based) models. Each of these sources has one or
more representational forms. For example, CAD systems use various forms of boundary
representations or volume-based forms defined in terms of positioned primitive shapes com-
bined by a set of Boolean operations. Image data is defined using a volumetric form such
as voxels or octrees. Depending on the configuration of the cells (mesh entities) a variety
of implicit and explicit boundary or volumetric representations have been used to represent
these domains.

Except in the case of image data or a regular grid and when all aspects of the simulation
process can be effectively defined in terms of volume metrics, it is generally accepted that
the use of a boundary representation is well suited for the domain definition in simulations
based on solving partial differential equations [3, 19, 21, 25]. We note that different boundary
representations contain different levels of information. At the simplest level, the geometry is
represented in terms of basic 0-3 dimensional topological entities of vertices, edges, faces and
regions. However, this is not sufficient to represent the general combinations and configura-
tions of these building blocks used in numerical simulations. The boundary representation
that can fully and properly represent such geometric domains are non-manifold boundary
representations [8, 29]. These representations include loops and shells where a loop is a
closed circuit of edges (faces are bounded by one or more loops) and a shell is a closed
circuit of faces (regions are bounded by one or more shells). In the case of non-manifold
models the representation must also indicate how topological entities are used by bounding
higher order entities. For example, each side of a face may be used by a different region.
Therefore, faces have two uses. Another terminology for the use of a topological entity by
higher order entities is co-entities [25] where a co-face indicates the sense use of a face in a
shell and a co-edge indicates the sense use of an edge in a loop.

Common to all boundary representations is an abstract representation of the topological
entities in the geometry and their adjacencies. Therefore, we will build the ITAPS geome-
try interface to key on these entities which will provide an effective means to interact with
multiple domain definition sources.

The abstraction of topology provides an effective means to develop functionality driven
interfaces to boundary-based modelers that are independent of any of the specific shape in-
formation. The information that gives the actual shape of the topological entities is model
specific but can also be abstracted by thinking of it as attribute information associated with
the topological entities. The ability to generalize these interfaces is further enhanced by the
fact that in the vast majority of cases, the geometry shape information needed by simulation
procedures (normals, nearest point, conversion between parametric and real, and various
derivatives) consists of pointwise interrogations that can be answered independently of any

28

particular shape representation used by the modeler. An examination of more advanced
situations, like evolving geometry simulations or automated geometric domain idealization
processes, indicates that they can also be satisfied using methods independent of any shape
representation [10, 28]. Although there are some situations where the simulation procedure
is actually changing the model topology that functions may need to deal with loop and shell
entities, it is possible to support the geometric interrogations used by simulation procedures
focused on the basic model entities of vertices, edges, faces and regions (and their adjacen-
cies).

In addition to the abstraction of topological entities (which indicates how things are
connected) and geometry (the information that defines shape), geometric modeling systems
must maintain tolerance information giving numerical information on how well the entities
actually fit together. The algorithms and methods within the geometric modeling system
are able to use the tolerance information to effectively define and maintain a consistent
representation of the geometric model. (The vast majority of what various geometry-based
applications have referred to as dirty geometry is caused by a lack of knowledge or proper
use of the tolerance information [3].)

The developers of CAD systems have recognized the possibility of supporting geometry-
based applications through general API’s. This has lead to the development of geometric
modeling kernels like ACIS and Parasolid which are now used as the geometry engines for
the majority of geometric modeling systems. Even those systems that do not use one of
these kernels have made function driven API’s available (Granite from PTC). These ge-
ometric modeling API’s have been successfully used to develop automated finite element
modeling processes [12, 23] and are the basis for commercial automatic mesh generators and
simulation-based design procedures [3]. The ITAPS geometry is being designed so that we
can take direct advantage of these API’s.

In cases where the shape and topology of the domain evolves based during the course of
a simulation, it is necessary to have a high level topological representation of the domain,
even in the cases where the only known representation of the domain is a mesh. In this
case, the topological representation must be built based on information available from the
simulation which is limited to the mesh and its deformation (e.g., node point coordinates),
the model topology before the current set of analysis steps (in the case of an evolving
geometry simulation), and simulation specific information such as contacting mesh entities,
entities that have separated due to fracture, etc. In these cases the process of constructing
or updating the topological entities associated with the domain geometric model is focused
on determining the appropriate sets of mesh faces, edges, and vertices to associate with the
model faces, edges and vertices respectively. Algorithms to do this based on mesh based
geometry parameters and/or simulation contact or fracture information have been developed
[10, 11, 19]. Once the model topology has been defined, the geometric shape information
can be defined directly in terms of the mesh facets, or can be made higher order using
subdivision surfaces [5, 11] or higher order triangular patches [17, 18].

29

